MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjprsn Structured version   Visualization version   Unicode version

Theorem disjprsn 4250
Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
disjprsn  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )

Proof of Theorem disjprsn
StepHypRef Expression
1 dfsn2 4190 . . 3  |-  { C }  =  { C ,  C }
21ineq2i 3811 . 2  |-  ( { A ,  B }  i^i  { C } )  =  ( { A ,  B }  i^i  { C ,  C }
)
3 disjpr2 4248 . . 3  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  C  /\  B  =/= 
C ) )  -> 
( { A ,  B }  i^i  { C ,  C } )  =  (/) )
43anidms 677 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C ,  C } )  =  (/) )
52, 4syl5eq 2668 1  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    =/= wne 2794    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  disjtpsn  4251  disjtp2  4252  diftpsn3  4332  funtpg  5942  funcnvtp  5951  prodtp  29573
  Copyright terms: Public domain W3C validator