MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfun Structured version   Visualization version   Unicode version

Theorem cnfldfun 19758
Description: The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
cnfldfun  |-  Funfld

Proof of Theorem cnfldfun
StepHypRef Expression
1 basendxnplusgndx 15989 . . . . . . 7  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
2 basendxnmulrndx 15999 . . . . . . 7  |-  ( Base `  ndx )  =/=  ( .r `  ndx )
3 plusgndxnmulrndx 15998 . . . . . . 7  |-  ( +g  ` 
ndx )  =/=  ( .r `  ndx )
4 fvex 6201 . . . . . . . 8  |-  ( Base `  ndx )  e.  _V
5 fvex 6201 . . . . . . . 8  |-  ( +g  ` 
ndx )  e.  _V
6 fvex 6201 . . . . . . . 8  |-  ( .r
`  ndx )  e.  _V
7 cnex 10017 . . . . . . . 8  |-  CC  e.  _V
8 addex 11830 . . . . . . . 8  |-  +  e.  _V
9 mulex 11831 . . . . . . . 8  |-  x.  e.  _V
104, 5, 6, 7, 8, 9funtp 5945 . . . . . . 7  |-  ( ( ( Base `  ndx )  =/=  ( +g  `  ndx )  /\  ( Base `  ndx )  =/=  ( .r `  ndx )  /\  ( +g  `  ndx )  =/=  ( .r `  ndx ) )  ->  Fun  {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. } )
111, 2, 3, 10mp3an 1424 . . . . . 6  |-  Fun  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }
12 fvex 6201 . . . . . . 7  |-  ( *r `  ndx )  e.  _V
13 cjf 13844 . . . . . . . 8  |-  * : CC --> CC
14 fex 6490 . . . . . . . 8  |-  ( ( * : CC --> CC  /\  CC  e.  _V )  ->  *  e.  _V )
1513, 7, 14mp2an 708 . . . . . . 7  |-  *  e. 
_V
1612, 15funsn 5939 . . . . . 6  |-  Fun  { <. ( *r `  ndx ) ,  * >. }
1711, 16pm3.2i 471 . . . . 5  |-  ( Fun 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  /\  Fun  { <. ( *r `  ndx ) ,  * >. } )
187, 8, 9dmtpop 5611 . . . . . . 7  |-  dom  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  =  { ( Base `  ndx ) ,  ( +g  ` 
ndx ) ,  ( .r `  ndx ) }
1915dmsnop 5609 . . . . . . 7  |-  dom  { <. ( *r `  ndx ) ,  * >. }  =  { ( *r `  ndx ) }
2018, 19ineq12i 3812 . . . . . 6  |-  ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom 
{ <. ( *r `  ndx ) ,  * >. } )  =  ( { ( Base `  ndx ) ,  ( +g  `  ndx ) ,  ( .r `  ndx ) }  i^i  {
( *r `  ndx ) } )
21 basendx 15923 . . . . . . . 8  |-  ( Base `  ndx )  =  1
22 1re 10039 . . . . . . . . . 10  |-  1  e.  RR
23 1lt4 11199 . . . . . . . . . 10  |-  1  <  4
2422, 23ltneii 10150 . . . . . . . . 9  |-  1  =/=  4
25 starvndx 16004 . . . . . . . . 9  |-  ( *r `  ndx )  =  4
2624, 25neeqtrri 2867 . . . . . . . 8  |-  1  =/=  ( *r `  ndx )
2721, 26eqnetri 2864 . . . . . . 7  |-  ( Base `  ndx )  =/=  (
*r `  ndx )
28 plusgndx 15976 . . . . . . . 8  |-  ( +g  ` 
ndx )  =  2
29 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
30 2lt4 11198 . . . . . . . . . 10  |-  2  <  4
3129, 30ltneii 10150 . . . . . . . . 9  |-  2  =/=  4
3231, 25neeqtrri 2867 . . . . . . . 8  |-  2  =/=  ( *r `  ndx )
3328, 32eqnetri 2864 . . . . . . 7  |-  ( +g  ` 
ndx )  =/=  (
*r `  ndx )
34 mulrndx 15996 . . . . . . . 8  |-  ( .r
`  ndx )  =  3
35 3re 11094 . . . . . . . . . 10  |-  3  e.  RR
36 3lt4 11197 . . . . . . . . . 10  |-  3  <  4
3735, 36ltneii 10150 . . . . . . . . 9  |-  3  =/=  4
3837, 25neeqtrri 2867 . . . . . . . 8  |-  3  =/=  ( *r `  ndx )
3934, 38eqnetri 2864 . . . . . . 7  |-  ( .r
`  ndx )  =/=  (
*r `  ndx )
40 disjtpsn 4251 . . . . . . 7  |-  ( ( ( Base `  ndx )  =/=  ( *r `  ndx )  /\  ( +g  `  ndx )  =/=  ( *r `  ndx )  /\  ( .r `  ndx )  =/=  ( *r `  ndx ) )  ->  ( { ( Base `  ndx ) ,  ( +g  ` 
ndx ) ,  ( .r `  ndx ) }  i^i  { ( *r `  ndx ) } )  =  (/) )
4127, 33, 39, 40mp3an 1424 . . . . . 6  |-  ( { ( Base `  ndx ) ,  ( +g  ` 
ndx ) ,  ( .r `  ndx ) }  i^i  { ( *r `  ndx ) } )  =  (/)
4220, 41eqtri 2644 . . . . 5  |-  ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom 
{ <. ( *r `  ndx ) ,  * >. } )  =  (/)
43 funun 5932 . . . . 5  |-  ( ( ( Fun  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  /\  Fun  {
<. ( *r `  ndx ) ,  * >. } )  /\  ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom 
{ <. ( *r `  ndx ) ,  * >. } )  =  (/) )  ->  Fun  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } ) )
4417, 42, 43mp2an 708 . . . 4  |-  Fun  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
45 tsetndx 16040 . . . . . . . 8  |-  (TopSet `  ndx )  =  9
46 9re 11107 . . . . . . . . . 10  |-  9  e.  RR
47 9lt10 11673 . . . . . . . . . 10  |-  9  < ; 1
0
4846, 47ltneii 10150 . . . . . . . . 9  |-  9  =/= ; 1 0
49 plendx 16047 . . . . . . . . 9  |-  ( le
`  ndx )  = ; 1 0
5048, 49neeqtrri 2867 . . . . . . . 8  |-  9  =/=  ( le `  ndx )
5145, 50eqnetri 2864 . . . . . . 7  |-  (TopSet `  ndx )  =/=  ( le `  ndx )
52 1nn 11031 . . . . . . . . . . 11  |-  1  e.  NN
53 2nn0 11309 . . . . . . . . . . 11  |-  2  e.  NN0
54 9nn0 11316 . . . . . . . . . . 11  |-  9  e.  NN0
5546leidi 10562 . . . . . . . . . . 11  |-  9  <_  9
5652, 53, 54, 55decltdi 11547 . . . . . . . . . 10  |-  9  < ; 1
2
5746, 56ltneii 10150 . . . . . . . . 9  |-  9  =/= ; 1 2
58 dsndx 16062 . . . . . . . . 9  |-  ( dist `  ndx )  = ; 1 2
5957, 58neeqtrri 2867 . . . . . . . 8  |-  9  =/=  ( dist `  ndx )
6045, 59eqnetri 2864 . . . . . . 7  |-  (TopSet `  ndx )  =/=  ( dist `  ndx )
61 10re 11517 . . . . . . . . . 10  |- ; 1 0  e.  RR
62 1nn0 11308 . . . . . . . . . . 11  |-  1  e.  NN0
63 0nn0 11307 . . . . . . . . . . 11  |-  0  e.  NN0
64 2nn 11185 . . . . . . . . . . 11  |-  2  e.  NN
65 2pos 11112 . . . . . . . . . . 11  |-  0  <  2
6662, 63, 64, 65declt 11530 . . . . . . . . . 10  |- ; 1 0  < ; 1 2
6761, 66ltneii 10150 . . . . . . . . 9  |- ; 1 0  =/= ; 1 2
6867, 58neeqtrri 2867 . . . . . . . 8  |- ; 1 0  =/=  ( dist `  ndx )
6949, 68eqnetri 2864 . . . . . . 7  |-  ( le
`  ndx )  =/=  ( dist `  ndx )
70 fvex 6201 . . . . . . . 8  |-  (TopSet `  ndx )  e.  _V
71 fvex 6201 . . . . . . . 8  |-  ( le
`  ndx )  e.  _V
72 fvex 6201 . . . . . . . 8  |-  ( dist `  ndx )  e.  _V
73 fvex 6201 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  _V
74 letsr 17227 . . . . . . . . 9  |-  <_  e.  TosetRel
7574elexi 3213 . . . . . . . 8  |-  <_  e.  _V
76 absf 14077 . . . . . . . . . 10  |-  abs : CC
--> RR
77 fex 6490 . . . . . . . . . 10  |-  ( ( abs : CC --> RR  /\  CC  e.  _V )  ->  abs  e.  _V )
7876, 7, 77mp2an 708 . . . . . . . . 9  |-  abs  e.  _V
79 subf 10283 . . . . . . . . . 10  |-  -  :
( CC  X.  CC )
--> CC
807, 7xpex 6962 . . . . . . . . . 10  |-  ( CC 
X.  CC )  e. 
_V
81 fex 6490 . . . . . . . . . 10  |-  ( (  -  : ( CC 
X.  CC ) --> CC 
/\  ( CC  X.  CC )  e.  _V )  ->  -  e.  _V )
8279, 80, 81mp2an 708 . . . . . . . . 9  |-  -  e.  _V
8378, 82coex 7118 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  _V
8470, 71, 72, 73, 75, 83funtp 5945 . . . . . . 7  |-  ( ( (TopSet `  ndx )  =/=  ( le `  ndx )  /\  (TopSet `  ndx )  =/=  ( dist `  ndx )  /\  ( le `  ndx )  =/=  ( dist `  ndx ) )  ->  Fun  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. } )
8551, 60, 69, 84mp3an 1424 . . . . . 6  |-  Fun  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }
86 fvex 6201 . . . . . . 7  |-  ( UnifSet ` 
ndx )  e.  _V
87 fvex 6201 . . . . . . 7  |-  (metUnif `  ( abs  o.  -  ) )  e.  _V
8886, 87funsn 5939 . . . . . 6  |-  Fun  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. }
8985, 88pm3.2i 471 . . . . 5  |-  ( Fun 
{ <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  /\  Fun  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
9073, 75, 83dmtpop 5611 . . . . . . 7  |-  dom  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  =  {
(TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist ` 
ndx ) }
9187dmsnop 5609 . . . . . . 7  |-  dom  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. }  =  { ( UnifSet
`  ndx ) }
9290, 91ineq12i 3812 . . . . . 6  |-  ( dom 
{ <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  i^i  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  =  ( { (TopSet `  ndx ) ,  ( le ` 
ndx ) ,  (
dist `  ndx ) }  i^i  { ( UnifSet ` 
ndx ) } )
93 3nn0 11310 . . . . . . . . . . 11  |-  3  e.  NN0
9452, 93, 54, 55decltdi 11547 . . . . . . . . . 10  |-  9  < ; 1
3
9546, 94ltneii 10150 . . . . . . . . 9  |-  9  =/= ; 1 3
96 unifndx 16064 . . . . . . . . 9  |-  ( UnifSet ` 
ndx )  = ; 1 3
9795, 96neeqtrri 2867 . . . . . . . 8  |-  9  =/=  ( UnifSet `  ndx )
9845, 97eqnetri 2864 . . . . . . 7  |-  (TopSet `  ndx )  =/=  ( UnifSet
`  ndx )
99 3nn 11186 . . . . . . . . . . 11  |-  3  e.  NN
100 3pos 11114 . . . . . . . . . . 11  |-  0  <  3
10162, 63, 99, 100declt 11530 . . . . . . . . . 10  |- ; 1 0  < ; 1 3
10261, 101ltneii 10150 . . . . . . . . 9  |- ; 1 0  =/= ; 1 3
103102, 96neeqtrri 2867 . . . . . . . 8  |- ; 1 0  =/=  ( UnifSet
`  ndx )
10449, 103eqnetri 2864 . . . . . . 7  |-  ( le
`  ndx )  =/=  ( UnifSet
`  ndx )
10562, 53deccl 11512 . . . . . . . . . . 11  |- ; 1 2  e.  NN0
106105nn0rei 11303 . . . . . . . . . 10  |- ; 1 2  e.  RR
107 2lt3 11195 . . . . . . . . . . 11  |-  2  <  3
10862, 53, 99, 107declt 11530 . . . . . . . . . 10  |- ; 1 2  < ; 1 3
109106, 108ltneii 10150 . . . . . . . . 9  |- ; 1 2  =/= ; 1 3
110109, 96neeqtrri 2867 . . . . . . . 8  |- ; 1 2  =/=  ( UnifSet
`  ndx )
11158, 110eqnetri 2864 . . . . . . 7  |-  ( dist `  ndx )  =/=  ( UnifSet
`  ndx )
112 disjtpsn 4251 . . . . . . 7  |-  ( ( (TopSet `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) )  ->  ( { (TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist `  ndx ) }  i^i  { (
UnifSet `  ndx ) } )  =  (/) )
11398, 104, 111, 112mp3an 1424 . . . . . 6  |-  ( { (TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist ` 
ndx ) }  i^i  { ( UnifSet `  ndx ) } )  =  (/)
11492, 113eqtri 2644 . . . . 5  |-  ( dom 
{ <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  i^i  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  =  (/)
115 funun 5932 . . . . 5  |-  ( ( ( Fun  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  /\  Fun  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  /\  ( dom  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  i^i  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  =  (/) )  ->  Fun  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
11689, 114, 115mp2an 708 . . . 4  |-  Fun  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
11744, 116pm3.2i 471 . . 3  |-  ( Fun  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  /\  Fun  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
118 dmun 5331 . . . . 5  |-  dom  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  =  ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  dom  { <. ( *r `  ndx ) ,  * >. } )
119 dmun 5331 . . . . 5  |-  dom  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  =  ( dom  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
120118, 119ineq12i 3812 . . . 4  |-  ( dom  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  i^i  dom  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  ( ( dom  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  dom  { <. ( *r `  ndx ) ,  * >. } )  i^i  ( dom  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
12118, 90ineq12i 3812 . . . . . . . . 9  |-  ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom 
{ <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. } )  =  ( { ( Base `  ndx ) ,  ( +g  `  ndx ) ,  ( .r `  ndx ) }  i^i  {
(TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist ` 
ndx ) } )
122 1lt9 11229 . . . . . . . . . . . . . 14  |-  1  <  9
12322, 122ltneii 10150 . . . . . . . . . . . . 13  |-  1  =/=  9
124123, 45neeqtrri 2867 . . . . . . . . . . . 12  |-  1  =/=  (TopSet `  ndx )
12521, 124eqnetri 2864 . . . . . . . . . . 11  |-  ( Base `  ndx )  =/=  (TopSet ` 
ndx )
126 2lt9 11228 . . . . . . . . . . . . . 14  |-  2  <  9
12729, 126ltneii 10150 . . . . . . . . . . . . 13  |-  2  =/=  9
128127, 45neeqtrri 2867 . . . . . . . . . . . 12  |-  2  =/=  (TopSet `  ndx )
12928, 128eqnetri 2864 . . . . . . . . . . 11  |-  ( +g  ` 
ndx )  =/=  (TopSet ` 
ndx )
130 3lt9 11227 . . . . . . . . . . . . . 14  |-  3  <  9
13135, 130ltneii 10150 . . . . . . . . . . . . 13  |-  3  =/=  9
132131, 45neeqtrri 2867 . . . . . . . . . . . 12  |-  3  =/=  (TopSet `  ndx )
13334, 132eqnetri 2864 . . . . . . . . . . 11  |-  ( .r
`  ndx )  =/=  (TopSet ` 
ndx )
134125, 129, 1333pm3.2i 1239 . . . . . . . . . 10  |-  ( (
Base `  ndx )  =/=  (TopSet `  ndx )  /\  ( +g  `  ndx )  =/=  (TopSet `  ndx )  /\  ( .r `  ndx )  =/=  (TopSet `  ndx ) )
135 1lt10 11681 . . . . . . . . . . . . . 14  |-  1  < ; 1
0
13622, 135ltneii 10150 . . . . . . . . . . . . 13  |-  1  =/= ; 1 0
137136, 49neeqtrri 2867 . . . . . . . . . . . 12  |-  1  =/=  ( le `  ndx )
13821, 137eqnetri 2864 . . . . . . . . . . 11  |-  ( Base `  ndx )  =/=  ( le `  ndx )
139 2lt10 11680 . . . . . . . . . . . . . 14  |-  2  < ; 1
0
14029, 139ltneii 10150 . . . . . . . . . . . . 13  |-  2  =/= ; 1 0
141140, 49neeqtrri 2867 . . . . . . . . . . . 12  |-  2  =/=  ( le `  ndx )
14228, 141eqnetri 2864 . . . . . . . . . . 11  |-  ( +g  ` 
ndx )  =/=  ( le `  ndx )
143 3lt10 11679 . . . . . . . . . . . . . 14  |-  3  < ; 1
0
14435, 143ltneii 10150 . . . . . . . . . . . . 13  |-  3  =/= ; 1 0
145144, 49neeqtrri 2867 . . . . . . . . . . . 12  |-  3  =/=  ( le `  ndx )
14634, 145eqnetri 2864 . . . . . . . . . . 11  |-  ( .r
`  ndx )  =/=  ( le `  ndx )
147138, 142, 1463pm3.2i 1239 . . . . . . . . . 10  |-  ( (
Base `  ndx )  =/=  ( le `  ndx )  /\  ( +g  `  ndx )  =/=  ( le `  ndx )  /\  ( .r `  ndx )  =/=  ( le `  ndx ) )
14822, 46, 122ltleii 10160 . . . . . . . . . . . . . . 15  |-  1  <_  9
14952, 53, 62, 148decltdi 11547 . . . . . . . . . . . . . 14  |-  1  < ; 1
2
15022, 149ltneii 10150 . . . . . . . . . . . . 13  |-  1  =/= ; 1 2
151150, 58neeqtrri 2867 . . . . . . . . . . . 12  |-  1  =/=  ( dist `  ndx )
15221, 151eqnetri 2864 . . . . . . . . . . 11  |-  ( Base `  ndx )  =/=  ( dist `  ndx )
15329, 46, 126ltleii 10160 . . . . . . . . . . . . . . 15  |-  2  <_  9
15452, 53, 53, 153decltdi 11547 . . . . . . . . . . . . . 14  |-  2  < ; 1
2
15529, 154ltneii 10150 . . . . . . . . . . . . 13  |-  2  =/= ; 1 2
156155, 58neeqtrri 2867 . . . . . . . . . . . 12  |-  2  =/=  ( dist `  ndx )
15728, 156eqnetri 2864 . . . . . . . . . . 11  |-  ( +g  ` 
ndx )  =/=  ( dist `  ndx )
15835, 46, 130ltleii 10160 . . . . . . . . . . . . . . 15  |-  3  <_  9
15952, 53, 93, 158decltdi 11547 . . . . . . . . . . . . . 14  |-  3  < ; 1
2
16035, 159ltneii 10150 . . . . . . . . . . . . 13  |-  3  =/= ; 1 2
161160, 58neeqtrri 2867 . . . . . . . . . . . 12  |-  3  =/=  ( dist `  ndx )
16234, 161eqnetri 2864 . . . . . . . . . . 11  |-  ( .r
`  ndx )  =/=  ( dist `  ndx )
163152, 157, 1623pm3.2i 1239 . . . . . . . . . 10  |-  ( (
Base `  ndx )  =/=  ( dist `  ndx )  /\  ( +g  `  ndx )  =/=  ( dist `  ndx )  /\  ( .r `  ndx )  =/=  ( dist `  ndx ) )
164 disjtp2 4252 . . . . . . . . . 10  |-  ( ( ( ( Base `  ndx )  =/=  (TopSet `  ndx )  /\  ( +g  `  ndx )  =/=  (TopSet `  ndx )  /\  ( .r `  ndx )  =/=  (TopSet ` 
ndx ) )  /\  ( ( Base `  ndx )  =/=  ( le `  ndx )  /\  ( +g  `  ndx )  =/=  ( le `  ndx )  /\  ( .r `  ndx )  =/=  ( le `  ndx ) )  /\  ( ( Base `  ndx )  =/=  ( dist `  ndx )  /\  ( +g  `  ndx )  =/=  ( dist `  ndx )  /\  ( .r `  ndx )  =/=  ( dist `  ndx ) ) )  ->  ( {
( Base `  ndx ) ,  ( +g  `  ndx ) ,  ( .r ` 
ndx ) }  i^i  { (TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist ` 
ndx ) } )  =  (/) )
165134, 147, 163, 164mp3an 1424 . . . . . . . . 9  |-  ( { ( Base `  ndx ) ,  ( +g  ` 
ndx ) ,  ( .r `  ndx ) }  i^i  { (TopSet `  ndx ) ,  ( le
`  ndx ) ,  (
dist `  ndx ) } )  =  (/)
166121, 165eqtri 2644 . . . . . . . 8  |-  ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom 
{ <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. } )  =  (/)
16718, 91ineq12i 3812 . . . . . . . . 9  |-  ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom 
{ <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o.  -  ) )
>. } )  =  ( { ( Base `  ndx ) ,  ( +g  ` 
ndx ) ,  ( .r `  ndx ) }  i^i  { ( UnifSet ` 
ndx ) } )
16852, 93, 62, 148decltdi 11547 . . . . . . . . . . . . 13  |-  1  < ; 1
3
16922, 168ltneii 10150 . . . . . . . . . . . 12  |-  1  =/= ; 1 3
170169, 96neeqtrri 2867 . . . . . . . . . . 11  |-  1  =/=  ( UnifSet `  ndx )
17121, 170eqnetri 2864 . . . . . . . . . 10  |-  ( Base `  ndx )  =/=  ( UnifSet
`  ndx )
17252, 93, 53, 153decltdi 11547 . . . . . . . . . . . . 13  |-  2  < ; 1
3
17329, 172ltneii 10150 . . . . . . . . . . . 12  |-  2  =/= ; 1 3
174173, 96neeqtrri 2867 . . . . . . . . . . 11  |-  2  =/=  ( UnifSet `  ndx )
17528, 174eqnetri 2864 . . . . . . . . . 10  |-  ( +g  ` 
ndx )  =/=  ( UnifSet
`  ndx )
17652, 93, 93, 158decltdi 11547 . . . . . . . . . . . . 13  |-  3  < ; 1
3
17735, 176ltneii 10150 . . . . . . . . . . . 12  |-  3  =/= ; 1 3
178177, 96neeqtrri 2867 . . . . . . . . . . 11  |-  3  =/=  ( UnifSet `  ndx )
17934, 178eqnetri 2864 . . . . . . . . . 10  |-  ( .r
`  ndx )  =/=  ( UnifSet
`  ndx )
180 disjtpsn 4251 . . . . . . . . . 10  |-  ( ( ( Base `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx ) )  -> 
( { ( Base `  ndx ) ,  ( +g  `  ndx ) ,  ( .r `  ndx ) }  i^i  {
( UnifSet `  ndx ) } )  =  (/) )
181171, 175, 179, 180mp3an 1424 . . . . . . . . 9  |-  ( { ( Base `  ndx ) ,  ( +g  ` 
ndx ) ,  ( .r `  ndx ) }  i^i  { ( UnifSet ` 
ndx ) } )  =  (/)
182167, 181eqtri 2644 . . . . . . . 8  |-  ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom 
{ <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o.  -  ) )
>. } )  =  (/)
183166, 182pm3.2i 471 . . . . . . 7  |-  ( ( dom  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom  {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. } )  =  (/)  /\  ( dom  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom 
{ <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o.  -  ) )
>. } )  =  (/) )
184 undisj2 4030 . . . . . . 7  |-  ( ( ( dom  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom  {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. } )  =  (/)  /\  ( dom  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  dom 
{ <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o.  -  ) )
>. } )  =  (/) ) 
<->  ( dom  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  ( dom  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/) )
185183, 184mpbi 220 . . . . . 6  |-  ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  ( dom  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/)
18619, 90ineq12i 3812 . . . . . . . . 9  |-  ( dom 
{ <. ( *r `  ndx ) ,  * >. }  i^i  dom  {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. } )  =  ( { ( *r `  ndx ) }  i^i  { (TopSet `  ndx ) ,  ( le
`  ndx ) ,  (
dist `  ndx ) } )
187 incom 3805 . . . . . . . . . 10  |-  ( { ( *r `  ndx ) }  i^i  {
(TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist ` 
ndx ) } )  =  ( { (TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist `  ndx ) }  i^i  { ( *r `  ndx ) } )
188 4re 11097 . . . . . . . . . . . . . 14  |-  4  e.  RR
189 4lt9 11226 . . . . . . . . . . . . . 14  |-  4  <  9
190188, 189gtneii 10149 . . . . . . . . . . . . 13  |-  9  =/=  4
191190, 25neeqtrri 2867 . . . . . . . . . . . 12  |-  9  =/=  ( *r `  ndx )
19245, 191eqnetri 2864 . . . . . . . . . . 11  |-  (TopSet `  ndx )  =/=  (
*r `  ndx )
193 4lt10 11678 . . . . . . . . . . . . . 14  |-  4  < ; 1
0
194188, 193gtneii 10149 . . . . . . . . . . . . 13  |- ; 1 0  =/=  4
195194, 25neeqtrri 2867 . . . . . . . . . . . 12  |- ; 1 0  =/=  (
*r `  ndx )
19649, 195eqnetri 2864 . . . . . . . . . . 11  |-  ( le
`  ndx )  =/=  (
*r `  ndx )
197 4nn0 11311 . . . . . . . . . . . . . . 15  |-  4  e.  NN0
198188, 46, 189ltleii 10160 . . . . . . . . . . . . . . 15  |-  4  <_  9
19952, 53, 197, 198decltdi 11547 . . . . . . . . . . . . . 14  |-  4  < ; 1
2
200188, 199gtneii 10149 . . . . . . . . . . . . 13  |- ; 1 2  =/=  4
201200, 25neeqtrri 2867 . . . . . . . . . . . 12  |- ; 1 2  =/=  (
*r `  ndx )
20258, 201eqnetri 2864 . . . . . . . . . . 11  |-  ( dist `  ndx )  =/=  (
*r `  ndx )
203 disjtpsn 4251 . . . . . . . . . . 11  |-  ( ( (TopSet `  ndx )  =/=  ( *r `  ndx )  /\  ( le `  ndx )  =/=  ( *r `  ndx )  /\  ( dist `  ndx )  =/=  ( *r `  ndx ) )  ->  ( { (TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist ` 
ndx ) }  i^i  { ( *r `  ndx ) } )  =  (/) )
204192, 196, 202, 203mp3an 1424 . . . . . . . . . 10  |-  ( { (TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist ` 
ndx ) }  i^i  { ( *r `  ndx ) } )  =  (/)
205187, 204eqtri 2644 . . . . . . . . 9  |-  ( { ( *r `  ndx ) }  i^i  {
(TopSet `  ndx ) ,  ( le `  ndx ) ,  ( dist ` 
ndx ) } )  =  (/)
206186, 205eqtri 2644 . . . . . . . 8  |-  ( dom 
{ <. ( *r `  ndx ) ,  * >. }  i^i  dom  {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. } )  =  (/)
20719, 91ineq12i 3812 . . . . . . . . 9  |-  ( dom 
{ <. ( *r `  ndx ) ,  * >. }  i^i  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  =  ( { ( *r `  ndx ) }  i^i  { ( UnifSet ` 
ndx ) } )
20852, 93, 197, 198decltdi 11547 . . . . . . . . . . . . 13  |-  4  < ; 1
3
209188, 208ltneii 10150 . . . . . . . . . . . 12  |-  4  =/= ; 1 3
210209, 96neeqtrri 2867 . . . . . . . . . . 11  |-  4  =/=  ( UnifSet `  ndx )
21125, 210eqnetri 2864 . . . . . . . . . 10  |-  ( *r `  ndx )  =/=  ( UnifSet `  ndx )
212 disjsn2 4247 . . . . . . . . . 10  |-  ( ( *r `  ndx )  =/=  ( UnifSet `  ndx )  ->  ( { ( *r `  ndx ) }  i^i  { (
UnifSet `  ndx ) } )  =  (/) )
213211, 212ax-mp 5 . . . . . . . . 9  |-  ( { ( *r `  ndx ) }  i^i  {
( UnifSet `  ndx ) } )  =  (/)
214207, 213eqtri 2644 . . . . . . . 8  |-  ( dom 
{ <. ( *r `  ndx ) ,  * >. }  i^i  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  =  (/)
215206, 214pm3.2i 471 . . . . . . 7  |-  ( ( dom  { <. (
*r `  ndx ) ,  * >. }  i^i  dom  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. } )  =  (/)  /\  ( dom  { <. ( *r `  ndx ) ,  * >. }  i^i  dom  { <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >. } )  =  (/) )
216 undisj2 4030 . . . . . . 7  |-  ( ( ( dom  { <. ( *r `  ndx ) ,  * >. }  i^i  dom  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. } )  =  (/)  /\  ( dom  { <. ( *r `  ndx ) ,  * >. }  i^i  dom  { <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >. } )  =  (/) )  <->  ( dom  {
<. ( *r `  ndx ) ,  * >. }  i^i  ( dom  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/) )
217215, 216mpbi 220 . . . . . 6  |-  ( dom 
{ <. ( *r `  ndx ) ,  * >. }  i^i  ( dom  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/)
218185, 217pm3.2i 471 . . . . 5  |-  ( ( dom  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  ( dom  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/)  /\  ( dom  { <. ( *r `  ndx ) ,  * >. }  i^i  ( dom  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/) )
219 undisj1 4029 . . . . 5  |-  ( ( ( dom  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  i^i  ( dom  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/)  /\  ( dom  { <. ( *r `  ndx ) ,  * >. }  i^i  ( dom  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/) )  <->  ( ( dom 
{ <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  dom  { <. ( *r `  ndx ) ,  * >. } )  i^i  ( dom  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/) )
220218, 219mpbi 220 . . . 4  |-  ( ( dom  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  dom  {
<. ( *r `  ndx ) ,  * >. } )  i^i  ( dom 
{ <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  dom  {
<. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/)
221120, 220eqtri 2644 . . 3  |-  ( dom  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  i^i  dom  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/)
222 funun 5932 . . 3  |-  ( ( ( Fun  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  /\  Fun  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  /\  ( dom  ( { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  i^i  dom  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  =  (/) )  ->  Fun  (
( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) ) )
223117, 221, 222mp2an 708 . 2  |-  Fun  (
( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
224 df-cnfld 19747 . . 3  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
225224funeqi 5909 . 2  |-  ( Funfld  <->  Fun  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) ) )
226223, 225mpbir 221 1  |-  Funfld
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {ctp 4181   <.cop 4183    X. cxp 5112   dom cdm 5114    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   2c2 11070   3c3 11071   4c4 11072   9c9 11077  ;cdc 11493   *ccj 13836   abscabs 13974   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   *rcstv 15943  TopSetcts 15947   lecple 15948   distcds 15950   UnifSetcunif 15951    TosetRel ctsr 17199   MetOpencmopn 19736  metUnifcmetu 19737  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-ps 17200  df-tsr 17201  df-cnfld 19747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator