MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtp2 Structured version   Visualization version   Unicode version

Theorem disjtp2 4252
Description: Two completely distinct unordered triples are disjoint. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtp2  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( { A ,  B ,  C }  i^i  { D ,  E ,  F } )  =  (/) )

Proof of Theorem disjtp2
StepHypRef Expression
1 df-tp 4182 . . 3  |-  { D ,  E ,  F }  =  ( { D ,  E }  u.  { F } )
21ineq2i 3811 . 2  |-  ( { A ,  B ,  C }  i^i  { D ,  E ,  F }
)  =  ( { A ,  B ,  C }  i^i  ( { D ,  E }  u.  { F } ) )
3 df-tp 4182 . . . . . 6  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
43ineq1i 3810 . . . . 5  |-  ( { A ,  B ,  C }  i^i  { D ,  E } )  =  ( ( { A ,  B }  u.  { C } )  i^i  { D ,  E }
)
5 3simpa 1058 . . . . . . . . 9  |-  ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D )  ->  ( A  =/=  D  /\  B  =/=  D ) )
6 3simpa 1058 . . . . . . . . 9  |-  ( ( A  =/=  E  /\  B  =/=  E  /\  C  =/=  E )  ->  ( A  =/=  E  /\  B  =/=  E ) )
7 disjpr2 4248 . . . . . . . . 9  |-  ( ( ( A  =/=  D  /\  B  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E ) )  -> 
( { A ,  B }  i^i  { D ,  E } )  =  (/) )
85, 6, 7syl2an 494 . . . . . . . 8  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E ) )  ->  ( { A ,  B }  i^i  { D ,  E } )  =  (/) )
983adant3 1081 . . . . . . 7  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( { A ,  B }  i^i  { D ,  E } )  =  (/) )
10 incom 3805 . . . . . . . 8  |-  ( { C }  i^i  { D ,  E }
)  =  ( { D ,  E }  i^i  { C } )
11 necom 2847 . . . . . . . . . . . 12  |-  ( C  =/=  D  <->  D  =/=  C )
1211biimpi 206 . . . . . . . . . . 11  |-  ( C  =/=  D  ->  D  =/=  C )
13123ad2ant3 1084 . . . . . . . . . 10  |-  ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D )  ->  D  =/=  C )
14 necom 2847 . . . . . . . . . . . 12  |-  ( C  =/=  E  <->  E  =/=  C )
1514biimpi 206 . . . . . . . . . . 11  |-  ( C  =/=  E  ->  E  =/=  C )
16153ad2ant3 1084 . . . . . . . . . 10  |-  ( ( A  =/=  E  /\  B  =/=  E  /\  C  =/=  E )  ->  E  =/=  C )
17 disjprsn 4250 . . . . . . . . . 10  |-  ( ( D  =/=  C  /\  E  =/=  C )  -> 
( { D ,  E }  i^i  { C } )  =  (/) )
1813, 16, 17syl2an 494 . . . . . . . . 9  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E ) )  ->  ( { D ,  E }  i^i  { C } )  =  (/) )
19183adant3 1081 . . . . . . . 8  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( { D ,  E }  i^i  { C } )  =  (/) )
2010, 19syl5eq 2668 . . . . . . 7  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( { C }  i^i  { D ,  E } )  =  (/) )
219, 20jca 554 . . . . . 6  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( ( { A ,  B }  i^i  { D ,  E }
)  =  (/)  /\  ( { C }  i^i  { D ,  E }
)  =  (/) ) )
22 undisj1 4029 . . . . . 6  |-  ( ( ( { A ,  B }  i^i  { D ,  E } )  =  (/)  /\  ( { C }  i^i  { D ,  E } )  =  (/) ) 
<->  ( ( { A ,  B }  u.  { C } )  i^i  { D ,  E }
)  =  (/) )
2321, 22sylib 208 . . . . 5  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( ( { A ,  B }  u.  { C } )  i^i  { D ,  E }
)  =  (/) )
244, 23syl5eq 2668 . . . 4  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( { A ,  B ,  C }  i^i  { D ,  E } )  =  (/) )
25 disjtpsn 4251 . . . . 5  |-  ( ( A  =/=  F  /\  B  =/=  F  /\  C  =/=  F )  ->  ( { A ,  B ,  C }  i^i  { F } )  =  (/) )
26253ad2ant3 1084 . . . 4  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( { A ,  B ,  C }  i^i  { F } )  =  (/) )
2724, 26jca 554 . . 3  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( ( { A ,  B ,  C }  i^i  { D ,  E } )  =  (/)  /\  ( { A ,  B ,  C }  i^i  { F } )  =  (/) ) )
28 undisj2 4030 . . 3  |-  ( ( ( { A ,  B ,  C }  i^i  { D ,  E } )  =  (/)  /\  ( { A ,  B ,  C }  i^i  { F } )  =  (/) )  <->  ( { A ,  B ,  C }  i^i  ( { D ,  E }  u.  { F } ) )  =  (/) )
2927, 28sylib 208 . 2  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( { A ,  B ,  C }  i^i  ( { D ,  E }  u.  { F } ) )  =  (/) )
302, 29syl5eq 2668 1  |-  ( ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D
)  /\  ( A  =/=  E  /\  B  =/= 
E  /\  C  =/=  E )  /\  ( A  =/=  F  /\  B  =/=  F  /\  C  =/= 
F ) )  -> 
( { A ,  B ,  C }  i^i  { D ,  E ,  F } )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    =/= wne 2794    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179   {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by:  cnfldfun  19758
  Copyright terms: Public domain W3C validator