Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxp1 Structured version   Visualization version   Unicode version

Theorem disjxp1 39238
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
disjxp1.1  |-  ( ph  -> Disj  x  e.  A  B
)
Assertion
Ref Expression
disjxp1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    C( x)

Proof of Theorem disjxp1
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 400 . . . . 5  |-  ( y  =  z  ->  (
y  =  z  \/  ( [_ y  /  x ]_ ( B  X.  C )  i^i  [_ z  /  x ]_ ( B  X.  C ) )  =  (/) ) )
21adantl 482 . . . 4  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =  z )  ->  (
y  =  z  \/  ( [_ y  /  x ]_ ( B  X.  C )  i^i  [_ z  /  x ]_ ( B  X.  C ) )  =  (/) ) )
3 simpl 473 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  -.  y  =  z )  -> 
( ph  /\  (
y  e.  A  /\  z  e.  A )
) )
4 neqne 2802 . . . . . 6  |-  ( -.  y  =  z  -> 
y  =/=  z )
54adantl 482 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  -.  y  =  z )  -> 
y  =/=  z )
6 csbxp 5200 . . . . . . . . 9  |-  [_ y  /  x ]_ ( B  X.  C )  =  ( [_ y  /  x ]_ B  X.  [_ y  /  x ]_ C
)
7 csbxp 5200 . . . . . . . . 9  |-  [_ z  /  x ]_ ( B  X.  C )  =  ( [_ z  /  x ]_ B  X.  [_ z  /  x ]_ C
)
86, 7ineq12i 3812 . . . . . . . 8  |-  ( [_ y  /  x ]_ ( B  X.  C )  i^i  [_ z  /  x ]_ ( B  X.  C
) )  =  ( ( [_ y  /  x ]_ B  X.  [_ y  /  x ]_ C
)  i^i  ( [_ z  /  x ]_ B  X.  [_ z  /  x ]_ C ) )
98a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  ( [_ y  /  x ]_ ( B  X.  C
)  i^i  [_ z  /  x ]_ ( B  X.  C ) )  =  ( ( [_ y  /  x ]_ B  X.  [_ y  /  x ]_ C )  i^i  ( [_ z  /  x ]_ B  X.  [_ z  /  x ]_ C ) ) )
10 simpll 790 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  ph )
11 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  y  e.  A )
12 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  z  e.  A )
1310, 11, 12jca31 557 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  (
( ph  /\  y  e.  A )  /\  z  e.  A ) )
14 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  y  =/=  z )
1514neneqd 2799 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  -.  y  =  z )
16 disjxp1.1 . . . . . . . . . . . . 13  |-  ( ph  -> Disj  x  e.  A  B
)
17 disjors 4635 . . . . . . . . . . . . 13  |-  (Disj  x  e.  A  B  <->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
1816, 17sylib 208 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
1918r19.21bi 2932 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
2019r19.21bi 2932 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  A )  /\  z  e.  A )  ->  (
y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
2120ord 392 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  z  e.  A )  ->  ( -.  y  =  z  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
2213, 15, 21sylc 65 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )
23 xpdisj1 5555 . . . . . . . 8  |-  ( (
[_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  ->  ( (
[_ y  /  x ]_ B  X.  [_ y  /  x ]_ C )  i^i  ( [_ z  /  x ]_ B  X.  [_ z  /  x ]_ C ) )  =  (/) )
2422, 23syl 17 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  (
( [_ y  /  x ]_ B  X.  [_ y  /  x ]_ C )  i^i  ( [_ z  /  x ]_ B  X.  [_ z  /  x ]_ C ) )  =  (/) )
259, 24eqtrd 2656 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  ( [_ y  /  x ]_ ( B  X.  C
)  i^i  [_ z  /  x ]_ ( B  X.  C ) )  =  (/) )
26 olc 399 . . . . . 6  |-  ( (
[_ y  /  x ]_ ( B  X.  C
)  i^i  [_ z  /  x ]_ ( B  X.  C ) )  =  (/)  ->  ( y  =  z  \/  ( [_ y  /  x ]_ ( B  X.  C )  i^i  [_ z  /  x ]_ ( B  X.  C
) )  =  (/) ) )
2725, 26syl 17 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  y  =/=  z )  ->  (
y  =  z  \/  ( [_ y  /  x ]_ ( B  X.  C )  i^i  [_ z  /  x ]_ ( B  X.  C ) )  =  (/) ) )
283, 5, 27syl2anc 693 . . . 4  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  -.  y  =  z )  -> 
( y  =  z  \/  ( [_ y  /  x ]_ ( B  X.  C )  i^i  [_ z  /  x ]_ ( B  X.  C
) )  =  (/) ) )
292, 28pm2.61dan 832 . . 3  |-  ( (
ph  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( y  =  z  \/  ( [_ y  /  x ]_ ( B  X.  C )  i^i  [_ z  /  x ]_ ( B  X.  C
) )  =  (/) ) )
3029ralrimivva 2971 . 2  |-  ( ph  ->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ ( B  X.  C )  i^i  [_ z  /  x ]_ ( B  X.  C
) )  =  (/) ) )
31 disjors 4635 . 2  |-  (Disj  x  e.  A  ( B  X.  C )  <->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ ( B  X.  C
)  i^i  [_ z  /  x ]_ ( B  X.  C ) )  =  (/) ) )
3230, 31sylibr 224 1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   [_csb 3533    i^i cin 3573   (/)c0 3915  Disj wdisj 4620    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-disj 4621  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  disjsnxp  39239
  Copyright terms: Public domain W3C validator