| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxp1 | Structured version Visualization version Unicode version | ||
| Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| disjxp1.1 |
|
| Ref | Expression |
|---|---|
| disjxp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 400 |
. . . . 5
| |
| 2 | 1 | adantl 482 |
. . . 4
|
| 3 | simpl 473 |
. . . . 5
| |
| 4 | neqne 2802 |
. . . . . 6
| |
| 5 | 4 | adantl 482 |
. . . . 5
|
| 6 | csbxp 5200 |
. . . . . . . . 9
| |
| 7 | csbxp 5200 |
. . . . . . . . 9
| |
| 8 | 6, 7 | ineq12i 3812 |
. . . . . . . 8
|
| 9 | 8 | a1i 11 |
. . . . . . 7
|
| 10 | simpll 790 |
. . . . . . . . . 10
| |
| 11 | simplrl 800 |
. . . . . . . . . 10
| |
| 12 | simplrr 801 |
. . . . . . . . . 10
| |
| 13 | 10, 11, 12 | jca31 557 |
. . . . . . . . 9
|
| 14 | simpr 477 |
. . . . . . . . . 10
| |
| 15 | 14 | neneqd 2799 |
. . . . . . . . 9
|
| 16 | disjxp1.1 |
. . . . . . . . . . . . 13
| |
| 17 | disjors 4635 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | sylib 208 |
. . . . . . . . . . . 12
|
| 19 | 18 | r19.21bi 2932 |
. . . . . . . . . . 11
|
| 20 | 19 | r19.21bi 2932 |
. . . . . . . . . 10
|
| 21 | 20 | ord 392 |
. . . . . . . . 9
|
| 22 | 13, 15, 21 | sylc 65 |
. . . . . . . 8
|
| 23 | xpdisj1 5555 |
. . . . . . . 8
| |
| 24 | 22, 23 | syl 17 |
. . . . . . 7
|
| 25 | 9, 24 | eqtrd 2656 |
. . . . . 6
|
| 26 | olc 399 |
. . . . . 6
| |
| 27 | 25, 26 | syl 17 |
. . . . 5
|
| 28 | 3, 5, 27 | syl2anc 693 |
. . . 4
|
| 29 | 2, 28 | pm2.61dan 832 |
. . 3
|
| 30 | 29 | ralrimivva 2971 |
. 2
|
| 31 | disjors 4635 |
. 2
| |
| 32 | 30, 31 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-disj 4621 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: disjsnxp 39239 |
| Copyright terms: Public domain | W3C validator |