| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjors | Structured version Visualization version Unicode version | ||
| Description: Two ways to say that a
collection |
| Ref | Expression |
|---|---|
| disjors |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2764 |
. . 3
| |
| 2 | nfcsb1v 3549 |
. . 3
| |
| 3 | csbeq1a 3542 |
. . 3
| |
| 4 | 1, 2, 3 | cbvdisj 4630 |
. 2
|
| 5 | csbeq1 3536 |
. . 3
| |
| 6 | 5 | disjor 4634 |
. 2
|
| 7 | 4, 6 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-in 3581 df-nul 3916 df-disj 4621 |
| This theorem is referenced by: disji2 4636 disjprg 4648 disjxiun 4649 disjxiunOLD 4650 disjxun 4651 iundisj2 23317 disji2f 29390 disjpreima 29397 disjxpin 29401 iundisj2f 29403 disjunsn 29407 iundisj2fi 29556 disjxp1 39238 disjinfi 39380 |
| Copyright terms: Public domain | W3C validator |