Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmecd Structured version   Visualization version   Unicode version

Theorem dmecd 34074
Description: Equality of the coset of  B and the coset of  C implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 7790). (Contributed by Peter Mazsa, 9-Oct-2018.)
Hypotheses
Ref Expression
dmecd.1  |-  ( ph  ->  dom  R  =  A )
dmecd.2  |-  ( ph  ->  [ B ] R  =  [ C ] R
)
Assertion
Ref Expression
dmecd  |-  ( ph  ->  ( B  e.  A  <->  C  e.  A ) )

Proof of Theorem dmecd
StepHypRef Expression
1 dmecd.2 . . . 4  |-  ( ph  ->  [ B ] R  =  [ C ] R
)
21neeq1d 2853 . . 3  |-  ( ph  ->  ( [ B ] R  =/=  (/)  <->  [ C ] R  =/=  (/) ) )
3 ecdmn0 7789 . . 3  |-  ( B  e.  dom  R  <->  [ B ] R  =/=  (/) )
4 ecdmn0 7789 . . 3  |-  ( C  e.  dom  R  <->  [ C ] R  =/=  (/) )
52, 3, 43bitr4g 303 . 2  |-  ( ph  ->  ( B  e.  dom  R  <-> 
C  e.  dom  R
) )
6 dmecd.1 . . 3  |-  ( ph  ->  dom  R  =  A )
76eleq2d 2687 . 2  |-  ( ph  ->  ( B  e.  dom  R  <-> 
B  e.  A ) )
86eleq2d 2687 . 2  |-  ( ph  ->  ( C  e.  dom  R  <-> 
C  e.  A ) )
95, 7, 83bitr3d 298 1  |-  ( ph  ->  ( B  e.  A  <->  C  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   dom cdm 5114   [cec 7740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744
This theorem is referenced by:  dmec2d  34075
  Copyright terms: Public domain W3C validator