MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecdmn0 Structured version   Visualization version   Unicode version

Theorem ecdmn0 7789
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecdmn0  |-  ( A  e.  dom  R  <->  [ A ] R  =/=  (/) )

Proof of Theorem ecdmn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  dom  R  ->  A  e.  _V )
2 n0 3931 . . 3  |-  ( [ A ] R  =/=  (/) 
<->  E. x  x  e. 
[ A ] R
)
3 ecexr 7747 . . . 4  |-  ( x  e.  [ A ] R  ->  A  e.  _V )
43exlimiv 1858 . . 3  |-  ( E. x  x  e.  [ A ] R  ->  A  e.  _V )
52, 4sylbi 207 . 2  |-  ( [ A ] R  =/=  (/)  ->  A  e.  _V )
6 vex 3203 . . . . 5  |-  x  e. 
_V
7 elecg 7785 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  _V )  ->  ( x  e.  [ A ] R  <->  A R x ) )
86, 7mpan 706 . . . 4  |-  ( A  e.  _V  ->  (
x  e.  [ A ] R  <->  A R x ) )
98exbidv 1850 . . 3  |-  ( A  e.  _V  ->  ( E. x  x  e.  [ A ] R  <->  E. x  A R x ) )
102a1i 11 . . 3  |-  ( A  e.  _V  ->  ( [ A ] R  =/=  (/) 
<->  E. x  x  e. 
[ A ] R
) )
11 eldmg 5319 . . 3  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
129, 10, 113bitr4rd 301 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  [ A ] R  =/=  (/) ) )
131, 5, 12pm5.21nii 368 1  |-  ( A  e.  dom  R  <->  [ A ] R  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   dom cdm 5114   [cec 7740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744
This theorem is referenced by:  ereldm  7790  elqsn0  7816  ecelqsdm  7817  eceqoveq  7853  divsfval  16207  sylow1lem5  18017  vitalilem2  23378  vitalilem3  23379  dfdm6  34071  dmecd  34074  n0elqs  34098
  Copyright terms: Public domain W3C validator