| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhset | Structured version Visualization version Unicode version | ||
| Description: The constructed full
vector space H for a lattice |
| Ref | Expression |
|---|---|
| dvhset.h |
|
| dvhset.t |
|
| dvhset.e |
|
| dvhset.d |
|
| dvhset.u |
|
| Ref | Expression |
|---|---|
| dvhset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvhset.u |
. . 3
| |
| 2 | dvhset.h |
. . . . 5
| |
| 3 | 2 | dvhfset 36369 |
. . . 4
|
| 4 | 3 | fveq1d 6193 |
. . 3
|
| 5 | 1, 4 | syl5eq 2668 |
. 2
|
| 6 | fveq2 6191 |
. . . . . . . 8
| |
| 7 | dvhset.t |
. . . . . . . 8
| |
| 8 | 6, 7 | syl6eqr 2674 |
. . . . . . 7
|
| 9 | fveq2 6191 |
. . . . . . . 8
| |
| 10 | dvhset.e |
. . . . . . . 8
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . 7
|
| 12 | 8, 11 | xpeq12d 5140 |
. . . . . 6
|
| 13 | 12 | opeq2d 4409 |
. . . . 5
|
| 14 | 8 | mpteq1d 4738 |
. . . . . . . 8
|
| 15 | 14 | opeq2d 4409 |
. . . . . . 7
|
| 16 | 12, 12, 15 | mpt2eq123dv 6717 |
. . . . . 6
|
| 17 | 16 | opeq2d 4409 |
. . . . 5
|
| 18 | fveq2 6191 |
. . . . . . 7
| |
| 19 | dvhset.d |
. . . . . . 7
| |
| 20 | 18, 19 | syl6eqr 2674 |
. . . . . 6
|
| 21 | 20 | opeq2d 4409 |
. . . . 5
|
| 22 | 13, 17, 21 | tpeq123d 4283 |
. . . 4
|
| 23 | eqidd 2623 |
. . . . . . 7
| |
| 24 | 11, 12, 23 | mpt2eq123dv 6717 |
. . . . . 6
|
| 25 | 24 | opeq2d 4409 |
. . . . 5
|
| 26 | 25 | sneqd 4189 |
. . . 4
|
| 27 | 22, 26 | uneq12d 3768 |
. . 3
|
| 28 | eqid 2622 |
. . 3
| |
| 29 | tpex 6957 |
. . . 4
| |
| 30 | snex 4908 |
. . . 4
| |
| 31 | 29, 30 | unex 6956 |
. . 3
|
| 32 | 27, 28, 31 | fvmpt 6282 |
. 2
|
| 33 | 5, 32 | sylan9eq 2676 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-dvech 36368 |
| This theorem is referenced by: dvhsca 36371 dvhvbase 36376 dvhfvadd 36380 dvhfvsca 36389 |
| Copyright terms: Public domain | W3C validator |