MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfv2ex Structured version   Visualization version   Unicode version

Theorem elfv2ex 6229
Description: If a function value of a function value has a member, the first argument is a set. (Contributed by AV, 8-Apr-2021.)
Assertion
Ref Expression
elfv2ex  |-  ( A  e.  ( ( F `
 B ) `  C )  ->  B  e.  _V )

Proof of Theorem elfv2ex
StepHypRef Expression
1 ax-1 6 . 2  |-  ( B  e.  _V  ->  ( A  e.  ( ( F `  B ) `  C )  ->  B  e.  _V ) )
2 fv2prc 6228 . . . 4  |-  ( -.  B  e.  _V  ->  ( ( F `  B
) `  C )  =  (/) )
32eleq2d 2687 . . 3  |-  ( -.  B  e.  _V  ->  ( A  e.  ( ( F `  B ) `
 C )  <->  A  e.  (/) ) )
4 noel 3919 . . . 4  |-  -.  A  e.  (/)
54pm2.21i 116 . . 3  |-  ( A  e.  (/)  ->  B  e.  _V )
63, 5syl6bi 243 . 2  |-  ( -.  B  e.  _V  ->  ( A  e.  ( ( F `  B ) `
 C )  ->  B  e.  _V )
)
71, 6pm2.61i 176 1  |-  ( A  e.  ( ( F `
 B ) `  C )  ->  B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator