HomeHome Metamath Proof Explorer
Theorem List (p. 63 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 6201-6300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfvex 6201 The value of a class exists. Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by NM, 30-Dec-1996.)
 |-  ( F `  A )  e.  _V
 
Theoremfvexi 6202 The value of a class exists. Inference form of fvex 6201. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  A  =  ( F `
  B )   =>    |-  A  e.  _V
 
Theoremfvexd 6203 The value of a class exists (as consequent of anything). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  ( F `  A )  e. 
 _V )
 
Theoremfvif 6204 Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( F `  if ( ph ,  A ,  B ) )  =  if ( ph ,  ( F `  A ) ,  ( F `  B ) )
 
Theoremiffv 6205 Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018.)
 |-  ( if ( ph ,  F ,  G ) `
  A )  =  if ( ph ,  ( F `  A ) ,  ( G `  A ) )
 
Theoremfv3 6206* Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( F `  A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) }
 
Theoremfvres 6207 The value of a restricted function. (Contributed by NM, 2-Aug-1994.)
 |-  ( A  e.  B  ->  ( ( F  |`  B ) `
  A )  =  ( F `  A ) )
 
Theoremfvresd 6208 The value of a restricted function, deduction version of fvres 6207. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  (
 ( F  |`  B ) `
  A )  =  ( F `  A ) )
 
Theoremfunssfv 6209 The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F  /\  A  e.  dom  G ) 
 ->  ( F `  A )  =  ( G `  A ) )
 
Theoremtz6.12-1 6210* Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
 |-  ( ( A F y  /\  E! y  A F y )  ->  ( F `  A )  =  y )
 
Theoremtz6.12 6211* Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.)
 |-  ( ( <. A ,  y >.  e.  F  /\  E! y <. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
 
Theoremtz6.12f 6212* Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
 |-  F/_ y F   =>    |-  ( ( <. A ,  y >.  e.  F  /\  E! y <. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
 
Theoremtz6.12c 6213* Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
 |-  ( E! y  A F y  ->  (
 ( F `  A )  =  y  <->  A F y ) )
 
Theoremtz6.12i 6214 Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |-  ( B  =/=  (/)  ->  (
 ( F `  A )  =  B  ->  A F B ) )
 
Theoremfvbr0 6215 Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( X F ( F `  X )  \/  ( F `  X )  =  (/) )
 
Theoremfvrn0 6216 A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.)
 |-  ( F `  X )  e.  ( ran  F  u.  { (/) } )
 
Theoremfvssunirn 6217 The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( F `  X )  C_  U. ran  F
 
Theoremndmfv 6218 The value of a class outside its domain is the empty set. (Contributed by NM, 24-Aug-1995.)
 |-  ( -.  A  e.  dom 
 F  ->  ( F `  A )  =  (/) )
 
Theoremndmfvrcl 6219 Reverse closure law for function with the empty set not in its domain. (Contributed by NM, 26-Apr-1996.)
 |- 
 dom  F  =  S   &    |-  -.  (/) 
 e.  S   =>    |-  ( ( F `  A )  e.  S  ->  A  e.  S )
 
Theoremelfvdm 6220 If a function value has a member, the argument belongs to the domain. (Contributed by NM, 12-Feb-2007.)
 |-  ( A  e.  ( F `  B )  ->  B  e.  dom  F )
 
Theoremelfvex 6221 If a function value has a member, the argument is a set. (Contributed by Mario Carneiro, 6-Nov-2015.)
 |-  ( A  e.  ( F `  B )  ->  B  e.  _V )
 
Theoremelfvexd 6222 If a function value is nonempty, its argument is a set. Deduction form of elfvex 6221. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  ( B `  C ) )   =>    |-  ( ph  ->  C  e.  _V )
 
Theoremeliman0 6223 A non-nul function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019.)
 |-  ( ( A  e.  B  /\  -.  ( F `
  A )  =  (/) )  ->  ( F `
  A )  e.  ( F " B ) )
 
Theoremnfvres 6224 The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
 |-  ( -.  A  e.  B  ->  ( ( F  |`  B ) `  A )  =  (/) )
 
Theoremnfunsn 6225 If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( -.  Fun  ( F  |`  { A }
 )  ->  ( F `  A )  =  (/) )
 
Theoremfvfundmfvn0 6226 If a class' value at an argument is not the empty set, the argument is contained in the domain of the class, and the class restricted to the argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.)
 |-  ( ( F `  A )  =/=  (/)  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) )
 
Theorem0fv 6227 Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
 |-  ( (/) `  A )  =  (/)
 
Theoremfv2prc 6228 A function's value at a function's value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021.)
 |-  ( -.  A  e.  _V 
 ->  ( ( F `  A ) `  B )  =  (/) )
 
Theoremelfv2ex 6229 If a function value of a function value has a member, the first argument is a set. (Contributed by AV, 8-Apr-2021.)
 |-  ( A  e.  (
 ( F `  B ) `  C )  ->  B  e.  _V )
 
Theoremfveqres 6230 Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995.)
 |-  ( ( F `  A )  =  ( G `  A )  ->  ( ( F  |`  B ) `
  A )  =  ( ( G  |`  B ) `
  A ) )
 
Theoremcsbfv12 6231 Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 20-Aug-2018.)
 |-  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F ` 
 [_ A  /  x ]_ B )
 
Theoremcsbfv2g 6232* Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
 |-  ( A  e.  C  -> 
 [_ A  /  x ]_ ( F `  B )  =  ( F ` 
 [_ A  /  x ]_ B ) )
 
Theoremcsbfv 6233* Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.)
 |-  [_ A  /  x ]_ ( F `  x )  =  ( F `  A )
 
Theoremfunbrfv 6234 The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( Fun  F  ->  ( A F B  ->  ( F `  A )  =  B ) )
 
Theoremfunopfv 6235 The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
 |-  ( Fun  F  ->  (
 <. A ,  B >.  e.  F  ->  ( F `  A )  =  B ) )
 
Theoremfnbrfvb 6236 Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `
  B )  =  C  <->  B F C ) )
 
Theoremfnopfvb 6237 Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `
  B )  =  C  <->  <. B ,  C >.  e.  F ) )
 
Theoremfunbrfvb 6238 Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( ( F `
  A )  =  B  <->  A F B ) )
 
Theoremfunopfvb 6239 Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of [Monk1] p. 42. (Contributed by NM, 26-Jan-1997.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( ( F `
  A )  =  B  <->  <. A ,  B >.  e.  F ) )
 
Theoremfunbrfv2b 6240 Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
 |-  ( Fun  F  ->  ( A F B  <->  ( A  e.  dom 
 F  /\  ( F `  A )  =  B ) ) )
 
Theoremdffn5 6241* Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( F  Fn  A  <->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
 
Theoremfnrnfv 6242* The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( F  Fn  A  ->  ran  F  =  {
 y  |  E. x  e.  A  y  =  ( F `  x ) } )
 
Theoremfvelrnb 6243* A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.)
 |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )
 
Theoremfoelrni 6244* A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.)
 |-  ( ( F : A -onto-> B  /\  Y  e.  B )  ->  E. x  e.  A  ( F `  x )  =  Y )
 
Theoremdfimafn 6245* Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( F " A )  =  { y  |  E. x  e.  A  ( F `  x )  =  y } )
 
Theoremdfimafn2 6246* Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( F " A )  =  U_ x  e.  A  { ( F `
  x ) }
 )
 
Theoremfunimass4 6247* Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfvelima 6248* Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( Fun  F  /\  A  e.  ( F
 " B ) ) 
 ->  E. x  e.  B  ( F `  x )  =  A )
 
Theoremfeqmptd 6249* Deduction form of dffn5 6241. (Contributed by Mario Carneiro, 8-Jan-2015.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
 
Theoremfeqresmpt 6250* Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C  C_  A )   =>    |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
 
Theoremfeqmptdf 6251 Deduction form of dffn5f 6252. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.)
 |-  F/_ x A   &    |-  F/_ x F   &    |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
 
Theoremdffn5f 6252* Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.)
 |-  F/_ x F   =>    |-  ( F  Fn  A  <->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
 
Theoremfvelimab 6253* Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
 |-  ( ( F  Fn  A  /\  B  C_  A )  ->  ( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
 
Theoremfvelimabd 6254* Deduction form of fvelimab 6253. (Contributed by Stanislas Polu, 9-Mar-2020.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  B 
 C_  A )   =>    |-  ( ph  ->  ( C  e.  ( F
 " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
 
Theoremfvi 6255 The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( A  e.  V  ->  (  _I  `  A )  =  A )
 
Theoremfviss 6256 The value of the identity function is a subset of the argument. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  (  _I  `  A )  C_  A
 
Theoremfniinfv 6257* The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
 |-  ( F  Fn  A  -> 
 |^|_ x  e.  A  ( F `  x )  =  |^| ran  F )
 
Theoremfnsnfv 6258 Singleton of function value. (Contributed by NM, 22-May-1998.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `
  B ) }  =  ( F " { B } ) )
 
Theoremopabiotafun 6259* Define a function whose value is "the unique  y such that  ph ( x ,  y )". (Contributed by NM, 19-May-2015.)
 |-  F  =  { <. x ,  y >.  |  {
 y  |  ph }  =  { y } }   =>    |-  Fun  F
 
Theoremopabiotadm 6260* Define a function whose value is "the unique  y such that  ph ( x ,  y )". (Contributed by NM, 16-Nov-2013.)
 |-  F  =  { <. x ,  y >.  |  {
 y  |  ph }  =  { y } }   =>    |-  dom  F  =  { x  |  E! y ph }
 
Theoremopabiota 6261* Define a function whose value is "the unique  y such that  ph ( x ,  y )". (Contributed by NM, 16-Nov-2013.)
 |-  F  =  { <. x ,  y >.  |  {
 y  |  ph }  =  { y } }   &    |-  ( x  =  B  ->  (
 ph 
 <->  ps ) )   =>    |-  ( B  e.  dom 
 F  ->  ( F `  B )  =  (
 iota y ps )
 )
 
Theoremfnimapr 6262 The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
 |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A ) 
 ->  ( F " { B ,  C }
 )  =  { ( F `  B ) ,  ( F `  C ) } )
 
Theoremssimaex 6263* The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
 |-  A  e.  _V   =>    |-  ( ( Fun 
 F  /\  B  C_  ( F " A ) ) 
 ->  E. x ( x 
 C_  A  /\  B  =  ( F " x ) ) )
 
Theoremssimaexg 6264* The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
 |-  ( ( A  e.  C  /\  Fun  F  /\  B  C_  ( F " A ) )  ->  E. x ( x  C_  A  /\  B  =  ( F " x ) ) )
 
Theoremfunfv 6265 A simplified expression for the value of a function when we know it's a function. (Contributed by NM, 22-May-1998.)
 |-  ( Fun  F  ->  ( F `  A )  =  U. ( F
 " { A }
 ) )
 
Theoremfunfv2 6266* The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by NM, 22-May-1998.)
 |-  ( Fun  F  ->  ( F `  A )  =  U. { y  |  A F y }
 )
 
Theoremfunfv2f 6267 The value of a function. Version of funfv2 6266 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.)
 |-  F/_ y A   &    |-  F/_ y F   =>    |-  ( Fun  F  ->  ( F `  A )  =  U. { y  |  A F y }
 )
 
Theoremfvun 6268 Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011.)
 |-  ( ( ( Fun 
 F  /\  Fun  G ) 
 /\  ( dom  F  i^i  dom  G )  =  (/) )  ->  ( ( F  u.  G ) `
  A )  =  ( ( F `  A )  u.  ( G `  A ) ) )
 
Theoremfvun1 6269 The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
 |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  ( ( F  u.  G ) `  X )  =  ( F `  X ) )
 
Theoremfvun2 6270 The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
 |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  ->  ( ( F  u.  G ) `  X )  =  ( G `  X ) )
 
Theoremdffv2 6271 Alternate definition of function value df-fv 5896 that doesn't require dummy variables. (Contributed by NM, 4-Aug-2010.)
 |-  ( F `  A )  =  U. ( ( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )
 
Theoremdmfco 6272 Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
 |-  ( ( Fun  G  /\  A  e.  dom  G )  ->  ( A  e.  dom  ( F  o.  G ) 
 <->  ( G `  A )  e.  dom  F ) )
 
Theoremfvco2 6273 Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
 |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X )  =  ( F `  ( G `  X ) ) )
 
Theoremfvco 6274 Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
 |-  ( ( Fun  G  /\  A  e.  dom  G )  ->  ( ( F  o.  G ) `  A )  =  ( F `  ( G `  A ) ) )
 
Theoremfvco3 6275 Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.)
 |-  ( ( G : A
 --> B  /\  C  e.  A )  ->  ( ( F  o.  G ) `
  C )  =  ( F `  ( G `  C ) ) )
 
Theoremfvco4i 6276 Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.)
 |-  (/)  =  ( F `  (/) )   &    |-  Fun  G   =>    |-  ( ( F  o.  G ) `  X )  =  ( F `  ( G `  X ) )
 
Theoremfvopab3g 6277* Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( x  e.  C  ->  E! y ph )   &    |-  F  =  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ( F `
  A )  =  B  <->  ch ) )
 
Theoremfvopab3ig 6278* Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( x  e.  C  ->  E* y ph )   &    |-  F  =  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  ( F `  A )  =  B ) )
 
Theorembrfvopabrbr 6279* The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 6697. (Contributed by AV, 29-Oct-2021.)
 |-  ( A `  Z )  =  { <. x ,  y >.  |  ( x ( B `  Z ) y  /\  ph ) }   &    |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph 
 <->  ps ) )   &    |-  Rel  ( B `  Z )   =>    |-  ( X ( A `  Z ) Y  <->  ( X ( B `  Z ) Y  /\  ps )
 )
 
Theoremfvmptg 6280* Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   =>    |-  ( ( A  e.  D  /\  C  e.  R )  ->  ( F `  A )  =  C )
 
Theoremfvmpti 6281* Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   =>    |-  ( A  e.  D  ->  ( F `  A )  =  (  _I  `  C ) )
 
Theoremfvmpt 6282* Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  C  e.  _V   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmpt2f 6283 Value of a function given by the "maps to" notation. (Contributed by Thierry Arnoux, 9-Mar-2017.)
 |-  F/_ x A   =>    |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
 
Theoremfvtresfn 6284* Functionality of a tuple-restriction function. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )   =>    |-  ( X  e.  B  ->  ( F `  X )  =  ( X  |`  V ) )
 
Theoremfvmpts 6285* Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  C  |->  B )   =>    |-  ( ( A  e.  C  /\  [_ A  /  x ]_ B  e.  V ) 
 ->  ( F `  A )  =  [_ A  /  x ]_ B )
 
Theoremfvmpt3 6286* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  ( x  e.  D  ->  B  e.  V )   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmpt3i 6287* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  B  e.  _V   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmptd 6288* Deduction version of fvmpt 6282. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )   &    |-  (
 ( ph  /\  x  =  A )  ->  B  =  C )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  C  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  C )
 
Theoremmptrcl 6289* Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( I  e.  ( F `  X )  ->  X  e.  A )
 
Theoremfvmpt2i 6290* Value of a function given by the "maps to" notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( x  e.  A  ->  ( F `  x )  =  (  _I  `  B ) )
 
Theoremfvmpt2 6291* Value of a function given by the "maps to" notation. (Contributed by FL, 21-Jun-2010.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `
  x )  =  B )
 
Theoremfvmptss 6292* If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping, even if  D is not in the base set  A. (Contributed by Mario Carneiro, 13-Feb-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C )
 
Theoremfvmpt2d 6293* Deduction version of fvmpt2 6291. (Contributed by Thierry Arnoux, 8-Dec-2016.)
 |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  V )   =>    |-  ( ( ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
 
Theoremfvmptex 6294* Express a function  F whose value  B may not always be a set in terms of another function  G for which sethood is guaranteed. (Note that  (  _I  `  B ) is just shorthand for  if ( B  e.  _V ,  B ,  (/) ), and it is always a set by fvex 6201.) Note also that these functions are not the same; wherever  B
( C ) is not a set,  C is not in the domain of  F (so it evaluates to the empty set), but  C is in the domain of  G, and  G ( C ) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  G  =  ( x  e.  A  |->  (  _I  `  B ) )   =>    |-  ( F `  C )  =  ( G `  C )
 
Theoremfvmptd3f 6295* Alternate deduction version of fvmpt 6282 with three non-freeness hypotheses instead of distinct variable conditions. (Contributed by AV, 19-Jan-2022.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  (
 ( F `  A )  =  B  ->  ps ) )   &    |-  F/_ x F   &    |-  F/ x ps   &    |-  F/ x ph   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
 )
 
Theoremfvmptdf 6296* Alternate deduction version of fvmpt 6282, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) (Proof shortened by AV, 19-Jan-2022.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  (
 ( F `  A )  =  B  ->  ps ) )   &    |-  F/_ x F   &    |-  F/ x ps   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
 
Theoremfvmptdv 6297* Alternate deduction version of fvmpt 6282, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  (
 ( F `  A )  =  B  ->  ps ) )   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
 
Theoremfvmptdv2 6298* Alternate deduction version of fvmpt 6282, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  B  =  C )   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
 
Theoremmpteqb 6299* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 6311. (Contributed by Mario Carneiro, 14-Nov-2014.)
 |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
 )
 
Theoremfvmptt 6300* Closed theorem form of fvmpt 6282. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  ( ( A. x ( x  =  A  ->  B  =  C ) 
 /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V ) )  ->  ( F `  A )  =  C )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >