Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem2 Structured version   Visualization version   Unicode version

Theorem clsk1indlem2 38340
Description: The ansatz closure function  ( r  e. 
~P 3o  |->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r )
) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k  |-  K  =  ( r  e.  ~P 3o  |->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r ) )
Assertion
Ref Expression
clsk1indlem2  |-  A. s  e.  ~P  3o s  C_  ( K `  s )
Distinct variable group:    s, r
Allowed substitution hints:    K( s, r)

Proof of Theorem clsk1indlem2
StepHypRef Expression
1 id 22 . . . . . . . . . 10  |-  ( s  =  { (/) }  ->  s  =  { (/) } )
2 snsspr1 4345 . . . . . . . . . 10  |-  { (/) } 
C_  { (/) ,  1o }
31, 2syl6eqss 3655 . . . . . . . . 9  |-  ( s  =  { (/) }  ->  s 
C_  { (/) ,  1o } )
43ancli 574 . . . . . . . 8  |-  ( s  =  { (/) }  ->  ( s  =  { (/) }  /\  s  C_  { (/) ,  1o } ) )
54con3i 150 . . . . . . 7  |-  ( -.  ( s  =  { (/)
}  /\  s  C_  {
(/) ,  1o } )  ->  -.  s  =  { (/) } )
6 ssid 3624 . . . . . . 7  |-  s  C_  s
75, 6jctir 561 . . . . . 6  |-  ( -.  ( s  =  { (/)
}  /\  s  C_  {
(/) ,  1o } )  ->  ( -.  s  =  { (/) }  /\  s  C_  s ) )
87orri 391 . . . . 5  |-  ( ( s  =  { (/) }  /\  s  C_  { (/) ,  1o } )  \/  ( -.  s  =  { (/) }  /\  s  C_  s ) )
98a1i 11 . . . 4  |-  ( s  e.  ~P 3o  ->  ( ( s  =  { (/)
}  /\  s  C_  {
(/) ,  1o } )  \/  ( -.  s  =  { (/) }  /\  s  C_  s ) ) )
10 sseq2 3627 . . . . 5  |-  ( if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s )  =  { (/) ,  1o }  ->  (
s  C_  if (
s  =  { (/) } ,  { (/) ,  1o } ,  s )  <->  s 
C_  { (/) ,  1o } ) )
11 sseq2 3627 . . . . 5  |-  ( if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s )  =  s  -> 
( s  C_  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s )  <->  s  C_  s
) )
1210, 11elimif 4122 . . . 4  |-  ( s 
C_  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )  <->  ( (
s  =  { (/) }  /\  s  C_  { (/) ,  1o } )  \/  ( -.  s  =  { (/) }  /\  s  C_  s ) ) )
139, 12sylibr 224 . . 3  |-  ( s  e.  ~P 3o  ->  s 
C_  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s ) )
14 eqeq1 2626 . . . . 5  |-  ( r  =  s  ->  (
r  =  { (/) }  <-> 
s  =  { (/) } ) )
15 id 22 . . . . 5  |-  ( r  =  s  ->  r  =  s )
1614, 15ifbieq2d 4111 . . . 4  |-  ( r  =  s  ->  if ( r  =  { (/)
} ,  { (/) ,  1o } ,  r )  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )
)
17 clsk1indlem.k . . . 4  |-  K  =  ( r  e.  ~P 3o  |->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r ) )
18 prex 4909 . . . . 5  |-  { (/) ,  1o }  e.  _V
19 vex 3203 . . . . 5  |-  s  e. 
_V
2018, 19ifex 4156 . . . 4  |-  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )  e.  _V
2116, 17, 20fvmpt 6282 . . 3  |-  ( s  e.  ~P 3o  ->  ( K `  s )  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s ) )
2213, 21sseqtr4d 3642 . 2  |-  ( s  e.  ~P 3o  ->  s 
C_  ( K `  s ) )
2322rgen 2922 1  |-  A. s  e.  ~P  3o s  C_  ( K `  s )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179    |-> cmpt 4729   ` cfv 5888   1oc1o 7553   3oc3o 7555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  clsk1independent  38344
  Copyright terms: Public domain W3C validator