| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsk1indlem2 | Structured version Visualization version Unicode version | ||
| Description: The ansatz closure
function
|
| Ref | Expression |
|---|---|
| clsk1indlem.k |
|
| Ref | Expression |
|---|---|
| clsk1indlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 |
. . . . . . . . . 10
| |
| 2 | snsspr1 4345 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | syl6eqss 3655 |
. . . . . . . . 9
|
| 4 | 3 | ancli 574 |
. . . . . . . 8
|
| 5 | 4 | con3i 150 |
. . . . . . 7
|
| 6 | ssid 3624 |
. . . . . . 7
| |
| 7 | 5, 6 | jctir 561 |
. . . . . 6
|
| 8 | 7 | orri 391 |
. . . . 5
|
| 9 | 8 | a1i 11 |
. . . 4
|
| 10 | sseq2 3627 |
. . . . 5
| |
| 11 | sseq2 3627 |
. . . . 5
| |
| 12 | 10, 11 | elimif 4122 |
. . . 4
|
| 13 | 9, 12 | sylibr 224 |
. . 3
|
| 14 | eqeq1 2626 |
. . . . 5
| |
| 15 | id 22 |
. . . . 5
| |
| 16 | 14, 15 | ifbieq2d 4111 |
. . . 4
|
| 17 | clsk1indlem.k |
. . . 4
| |
| 18 | prex 4909 |
. . . . 5
| |
| 19 | vex 3203 |
. . . . 5
| |
| 20 | 18, 19 | ifex 4156 |
. . . 4
|
| 21 | 16, 17, 20 | fvmpt 6282 |
. . 3
|
| 22 | 13, 21 | sseqtr4d 3642 |
. 2
|
| 23 | 22 | rgen 2922 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 |
| This theorem is referenced by: clsk1independent 38344 |
| Copyright terms: Public domain | W3C validator |