MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqif Structured version   Visualization version   Unicode version

Theorem eqif 4126
Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
eqif  |-  ( A  =  if ( ph ,  B ,  C )  <-> 
( ( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C )
) )

Proof of Theorem eqif
StepHypRef Expression
1 eqeq2 2633 . 2  |-  ( if ( ph ,  B ,  C )  =  B  ->  ( A  =  if ( ph ,  B ,  C )  <->  A  =  B ) )
2 eqeq2 2633 . 2  |-  ( if ( ph ,  B ,  C )  =  C  ->  ( A  =  if ( ph ,  B ,  C )  <->  A  =  C ) )
31, 2elimif 4122 1  |-  ( A  =  if ( ph ,  B ,  C )  <-> 
( ( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-if 4087
This theorem is referenced by:  ifval  4127  xpima  5576  fin23lem19  9158  fin23lem28  9162  fin23lem29  9163  fin23lem30  9164  aalioulem3  24089  iocinif  29543  fsumcvg4  29996  ind1a  30081  esumsnf  30126  itg2addnclem2  33462  clsk1indlem4  38342  afvpcfv0  41226
  Copyright terms: Public domain W3C validator