| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elintfv | Structured version Visualization version Unicode version | ||
| Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| elintfv.1 |
|
| Ref | Expression |
|---|---|
| elintfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintfv.1 |
. . 3
| |
| 2 | 1 | elint 4481 |
. 2
|
| 3 | ssel2 3598 |
. . . . . . . . . 10
| |
| 4 | fnbrfvb 6236 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | sylan2 491 |
. . . . . . . . 9
|
| 6 | 5 | anassrs 680 |
. . . . . . . 8
|
| 7 | 6 | rexbidva 3049 |
. . . . . . 7
|
| 8 | vex 3203 |
. . . . . . . 8
| |
| 9 | 8 | elima 5471 |
. . . . . . 7
|
| 10 | 7, 9 | syl6rbbr 279 |
. . . . . 6
|
| 11 | 10 | imbi1d 331 |
. . . . 5
|
| 12 | r19.23v 3023 |
. . . . 5
| |
| 13 | 11, 12 | syl6bbr 278 |
. . . 4
|
| 14 | 13 | albidv 1849 |
. . 3
|
| 15 | ralcom4 3224 |
. . . 4
| |
| 16 | eqcom 2629 |
. . . . . . . 8
| |
| 17 | 16 | imbi1i 339 |
. . . . . . 7
|
| 18 | 17 | albii 1747 |
. . . . . 6
|
| 19 | fvex 6201 |
. . . . . . 7
| |
| 20 | eleq2 2690 |
. . . . . . 7
| |
| 21 | 19, 20 | ceqsalv 3233 |
. . . . . 6
|
| 22 | 18, 21 | bitri 264 |
. . . . 5
|
| 23 | 22 | ralbii 2980 |
. . . 4
|
| 24 | 15, 23 | bitr3i 266 |
. . 3
|
| 25 | 14, 24 | syl6bb 276 |
. 2
|
| 26 | 2, 25 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |