Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintfv Structured version   Visualization version   Unicode version

Theorem elintfv 31662
Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.)
Hypothesis
Ref Expression
elintfv.1  |-  X  e. 
_V
Assertion
Ref Expression
elintfv  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( X  e.  |^| ( F " B )  <->  A. y  e.  B  X  e.  ( F `  y ) ) )
Distinct variable groups:    y, A    y, B    y, F    y, X

Proof of Theorem elintfv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elintfv.1 . . 3  |-  X  e. 
_V
21elint 4481 . 2  |-  ( X  e.  |^| ( F " B )  <->  A. z
( z  e.  ( F " B )  ->  X  e.  z ) )
3 ssel2 3598 . . . . . . . . . 10  |-  ( ( B  C_  A  /\  y  e.  B )  ->  y  e.  A )
4 fnbrfvb 6236 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( ( F `  y )  =  z  <-> 
y F z ) )
53, 4sylan2 491 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  ( B  C_  A  /\  y  e.  B )
)  ->  ( ( F `  y )  =  z  <->  y F z ) )
65anassrs 680 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  y  e.  B
)  ->  ( ( F `  y )  =  z  <->  y F z ) )
76rexbidva 3049 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. y  e.  B  ( F `  y )  =  z  <->  E. y  e.  B  y F z ) )
8 vex 3203 . . . . . . . 8  |-  z  e. 
_V
98elima 5471 . . . . . . 7  |-  ( z  e.  ( F " B )  <->  E. y  e.  B  y F
z )
107, 9syl6rbbr 279 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( z  e.  ( F " B )  <->  E. y  e.  B  ( F `  y )  =  z ) )
1110imbi1d 331 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( z  e.  ( F " B
)  ->  X  e.  z )  <->  ( E. y  e.  B  ( F `  y )  =  z  ->  X  e.  z ) ) )
12 r19.23v 3023 . . . . 5  |-  ( A. y  e.  B  (
( F `  y
)  =  z  ->  X  e.  z )  <->  ( E. y  e.  B  ( F `  y )  =  z  ->  X  e.  z ) )
1311, 12syl6bbr 278 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( z  e.  ( F " B
)  ->  X  e.  z )  <->  A. y  e.  B  ( ( F `  y )  =  z  ->  X  e.  z ) ) )
1413albidv 1849 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( A. z ( z  e.  ( F
" B )  ->  X  e.  z )  <->  A. z A. y  e.  B  ( ( F `
 y )  =  z  ->  X  e.  z ) ) )
15 ralcom4 3224 . . . 4  |-  ( A. y  e.  B  A. z ( ( F `
 y )  =  z  ->  X  e.  z )  <->  A. z A. y  e.  B  ( ( F `  y )  =  z  ->  X  e.  z ) )
16 eqcom 2629 . . . . . . . 8  |-  ( ( F `  y )  =  z  <->  z  =  ( F `  y ) )
1716imbi1i 339 . . . . . . 7  |-  ( ( ( F `  y
)  =  z  ->  X  e.  z )  <->  ( z  =  ( F `
 y )  ->  X  e.  z )
)
1817albii 1747 . . . . . 6  |-  ( A. z ( ( F `
 y )  =  z  ->  X  e.  z )  <->  A. z
( z  =  ( F `  y )  ->  X  e.  z ) )
19 fvex 6201 . . . . . . 7  |-  ( F `
 y )  e. 
_V
20 eleq2 2690 . . . . . . 7  |-  ( z  =  ( F `  y )  ->  ( X  e.  z  <->  X  e.  ( F `  y ) ) )
2119, 20ceqsalv 3233 . . . . . 6  |-  ( A. z ( z  =  ( F `  y
)  ->  X  e.  z )  <->  X  e.  ( F `  y ) )
2218, 21bitri 264 . . . . 5  |-  ( A. z ( ( F `
 y )  =  z  ->  X  e.  z )  <->  X  e.  ( F `  y ) )
2322ralbii 2980 . . . 4  |-  ( A. y  e.  B  A. z ( ( F `
 y )  =  z  ->  X  e.  z )  <->  A. y  e.  B  X  e.  ( F `  y ) )
2415, 23bitr3i 266 . . 3  |-  ( A. z A. y  e.  B  ( ( F `  y )  =  z  ->  X  e.  z )  <->  A. y  e.  B  X  e.  ( F `  y ) )
2514, 24syl6bb 276 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( A. z ( z  e.  ( F
" B )  ->  X  e.  z )  <->  A. y  e.  B  X  e.  ( F `  y
) ) )
262, 25syl5bb 272 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( X  e.  |^| ( F " B )  <->  A. y  e.  B  X  e.  ( F `  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   |^|cint 4475   class class class wbr 4653   "cima 5117    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator