MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeinds Structured version   Visualization version   Unicode version

Theorem cusgrsizeinds 26348
Description: Part 1 of induction step in cusgrsize 26350. The size of a complete simple graph with  n vertices is  ( n  -  1 ) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v  |-  V  =  (Vtx `  G )
cusgrsizeindb0.e  |-  E  =  (Edg `  G )
cusgrsizeinds.f  |-  F  =  { e  e.  E  |  N  e/  e }
Assertion
Ref Expression
cusgrsizeinds  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  N  e.  V )  ->  ( # `
 E )  =  ( ( ( # `  V )  -  1 )  +  ( # `  F ) ) )
Distinct variable groups:    e, E    e, G    e, N    e, V
Allowed substitution hint:    F( e)

Proof of Theorem cusgrsizeinds
StepHypRef Expression
1 cusgrusgr 26315 . . . 4  |-  ( G  e. ComplUSGraph  ->  G  e. USGraph  )
2 cusgrsizeindb0.v . . . . . . . 8  |-  V  =  (Vtx `  G )
32isfusgr 26210 . . . . . . 7  |-  ( G  e. FinUSGraph 
<->  ( G  e. USGraph  /\  V  e.  Fin ) )
4 fusgrfis 26222 . . . . . . 7  |-  ( G  e. FinUSGraph  ->  (Edg `  G
)  e.  Fin )
53, 4sylbir 225 . . . . . 6  |-  ( ( G  e. USGraph  /\  V  e. 
Fin )  ->  (Edg `  G )  e.  Fin )
65a1d 25 . . . . 5  |-  ( ( G  e. USGraph  /\  V  e. 
Fin )  ->  ( N  e.  V  ->  (Edg
`  G )  e. 
Fin ) )
76ex 450 . . . 4  |-  ( G  e. USGraph  ->  ( V  e. 
Fin  ->  ( N  e.  V  ->  (Edg `  G
)  e.  Fin )
) )
81, 7syl 17 . . 3  |-  ( G  e. ComplUSGraph  ->  ( V  e. 
Fin  ->  ( N  e.  V  ->  (Edg `  G
)  e.  Fin )
) )
983imp 1256 . 2  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  N  e.  V )  ->  (Edg `  G )  e.  Fin )
10 eqid 2622 . . . . . . 7  |-  { e  e.  E  |  N  e.  e }  =  {
e  e.  E  |  N  e.  e }
11 cusgrsizeinds.f . . . . . . 7  |-  F  =  { e  e.  E  |  N  e/  e }
1210, 11elnelun 3964 . . . . . 6  |-  ( { e  e.  E  |  N  e.  e }  u.  F )  =  E
1312eqcomi 2631 . . . . 5  |-  E  =  ( { e  e.  E  |  N  e.  e }  u.  F
)
1413fveq2i 6194 . . . 4  |-  ( # `  E )  =  (
# `  ( {
e  e.  E  |  N  e.  e }  u.  F ) )
1514a1i 11 . . 3  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  N  e.  V )  /\  (Edg `  G )  e.  Fin )  ->  ( # `  E
)  =  ( # `  ( { e  e.  E  |  N  e.  e }  u.  F
) ) )
16 cusgrsizeindb0.e . . . . . . . 8  |-  E  =  (Edg `  G )
1716eqcomi 2631 . . . . . . 7  |-  (Edg `  G )  =  E
1817eleq1i 2692 . . . . . 6  |-  ( (Edg
`  G )  e. 
Fin 
<->  E  e.  Fin )
19 rabfi 8185 . . . . . 6  |-  ( E  e.  Fin  ->  { e  e.  E  |  N  e.  e }  e.  Fin )
2018, 19sylbi 207 . . . . 5  |-  ( (Edg
`  G )  e. 
Fin  ->  { e  e.  E  |  N  e.  e }  e.  Fin )
2120adantl 482 . . . 4  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  N  e.  V )  /\  (Edg `  G )  e.  Fin )  ->  { e  e.  E  |  N  e.  e }  e.  Fin )
221anim1i 592 . . . . . . . 8  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin )  ->  ( G  e. USGraph  /\  V  e. 
Fin ) )
2322, 3sylibr 224 . . . . . . 7  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin )  ->  G  e. FinUSGraph  )
242, 16, 11usgrfilem 26219 . . . . . . 7  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  ( E  e.  Fin  <->  F  e.  Fin ) )
2523, 24stoic3 1701 . . . . . 6  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  N  e.  V )  ->  ( E  e.  Fin  <->  F  e.  Fin ) )
2618, 25syl5bb 272 . . . . 5  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  N  e.  V )  ->  (
(Edg `  G )  e.  Fin  <->  F  e.  Fin ) )
2726biimpa 501 . . . 4  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  N  e.  V )  /\  (Edg `  G )  e.  Fin )  ->  F  e.  Fin )
2810, 11elneldisj 3963 . . . . 5  |-  ( { e  e.  E  |  N  e.  e }  i^i  F )  =  (/)
2928a1i 11 . . . 4  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  N  e.  V )  /\  (Edg `  G )  e.  Fin )  ->  ( { e  e.  E  |  N  e.  e }  i^i  F
)  =  (/) )
30 hashun 13171 . . . 4  |-  ( ( { e  e.  E  |  N  e.  e }  e.  Fin  /\  F  e.  Fin  /\  ( { e  e.  E  |  N  e.  e }  i^i  F )  =  (/) )  ->  ( # `  ( { e  e.  E  |  N  e.  e }  u.  F )
)  =  ( (
# `  { e  e.  E  |  N  e.  e } )  +  ( # `  F
) ) )
3121, 27, 29, 30syl3anc 1326 . . 3  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  N  e.  V )  /\  (Edg `  G )  e.  Fin )  ->  ( # `  ( { e  e.  E  |  N  e.  e }  u.  F )
)  =  ( (
# `  { e  e.  E  |  N  e.  e } )  +  ( # `  F
) ) )
322, 16cusgrsizeindslem 26347 . . . . 5  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  N  e.  V )  ->  ( # `
 { e  e.  E  |  N  e.  e } )  =  ( ( # `  V
)  -  1 ) )
3332adantr 481 . . . 4  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  N  e.  V )  /\  (Edg `  G )  e.  Fin )  ->  ( # `  {
e  e.  E  |  N  e.  e }
)  =  ( (
# `  V )  -  1 ) )
3433oveq1d 6665 . . 3  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  N  e.  V )  /\  (Edg `  G )  e.  Fin )  ->  ( ( # `  { e  e.  E  |  N  e.  e } )  +  (
# `  F )
)  =  ( ( ( # `  V
)  -  1 )  +  ( # `  F
) ) )
3515, 31, 343eqtrd 2660 . 2  |-  ( ( ( G  e. ComplUSGraph  /\  V  e.  Fin  /\  N  e.  V )  /\  (Edg `  G )  e.  Fin )  ->  ( # `  E
)  =  ( ( ( # `  V
)  -  1 )  +  ( # `  F
) ) )
369, 35mpdan 702 1  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  N  e.  V )  ->  ( # `
 E )  =  ( ( ( # `  V )  -  1 )  +  ( # `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    e/ wnel 2897   {crab 2916    u. cun 3572    i^i cin 3573   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    + caddc 9939    - cmin 10266   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   FinUSGraph cfusgr 26208  ComplUSGraphccusgr 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231  df-cusgr 26232
This theorem is referenced by:  cusgrsize2inds  26349
  Copyright terms: Public domain W3C validator