| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwincl1 | Structured version Visualization version Unicode version | ||
| Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| Ref | Expression |
|---|---|
| elpwincl.1 |
|
| Ref | Expression |
|---|---|
| elpwincl1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwincl.1 |
. . 3
| |
| 2 | elpwi 4168 |
. . 3
| |
| 3 | ssinss1 3841 |
. . 3
| |
| 4 | 1, 2, 3 | 3syl 18 |
. 2
|
| 5 | inex1g 4801 |
. . 3
| |
| 6 | elpwg 4166 |
. . 3
| |
| 7 | 1, 5, 6 | 3syl 18 |
. 2
|
| 8 | 4, 7 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
| This theorem is referenced by: difelcarsg 30372 inelcarsg 30373 carsgclctunlem1 30379 carsgclctunlem2 30381 carsgclctunlem3 30382 carsgclctun 30383 |
| Copyright terms: Public domain | W3C validator |