MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsnres Structured version   Visualization version   Unicode version

Theorem elsnres 5436
Description: Membership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.)
Hypothesis
Ref Expression
elsnres.1  |-  C  e. 
_V
Assertion
Ref Expression
elsnres  |-  ( A  e.  ( B  |`  { C } )  <->  E. y
( A  =  <. C ,  y >.  /\  <. C ,  y >.  e.  B
) )
Distinct variable groups:    y, A    y, B    y, C

Proof of Theorem elsnres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elres 5435 . 2  |-  ( A  e.  ( B  |`  { C } )  <->  E. x  e.  { C } E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B ) )
2 rexcom4 3225 . 2  |-  ( E. x  e.  { C } E. y ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B )  <->  E. y E. x  e.  { C }  ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B ) )
3 elsnres.1 . . . 4  |-  C  e. 
_V
4 opeq1 4402 . . . . . 6  |-  ( x  =  C  ->  <. x ,  y >.  =  <. C ,  y >. )
54eqeq2d 2632 . . . . 5  |-  ( x  =  C  ->  ( A  =  <. x ,  y >.  <->  A  =  <. C ,  y >. )
)
64eleq1d 2686 . . . . 5  |-  ( x  =  C  ->  ( <. x ,  y >.  e.  B  <->  <. C ,  y
>.  e.  B ) )
75, 6anbi12d 747 . . . 4  |-  ( x  =  C  ->  (
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  <->  ( A  = 
<. C ,  y >.  /\  <. C ,  y
>.  e.  B ) ) )
83, 7rexsn 4223 . . 3  |-  ( E. x  e.  { C }  ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  ( A  =  <. C ,  y
>.  /\  <. C ,  y
>.  e.  B ) )
98exbii 1774 . 2  |-  ( E. y E. x  e. 
{ C }  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  <->  E. y ( A  =  <. C ,  y
>.  /\  <. C ,  y
>.  e.  B ) )
101, 2, 93bitri 286 1  |-  ( A  e.  ( B  |`  { C } )  <->  E. y
( A  =  <. C ,  y >.  /\  <. C ,  y >.  e.  B
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   {csn 4177   <.cop 4183    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-res 5126
This theorem is referenced by:  fvn0ssdmfun  6350  frxp  7287
  Copyright terms: Public domain W3C validator