MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elres Structured version   Visualization version   Unicode version

Theorem elres 5435
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.)
Assertion
Ref Expression
elres  |-  ( A  e.  ( B  |`  C )  <->  E. x  e.  C  E. y
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem elres
StepHypRef Expression
1 relres 5426 . . . . 5  |-  Rel  ( B  |`  C )
2 elrel 5222 . . . . 5  |-  ( ( Rel  ( B  |`  C )  /\  A  e.  ( B  |`  C ) )  ->  E. x E. y  A  =  <. x ,  y >.
)
31, 2mpan 706 . . . 4  |-  ( A  e.  ( B  |`  C )  ->  E. x E. y  A  =  <. x ,  y >.
)
4 eleq1 2689 . . . . . . . . 9  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  ( B  |`  C )  <->  <. x ,  y >.  e.  ( B  |`  C ) ) )
54biimpd 219 . . . . . . . 8  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  ( B  |`  C )  ->  <. x ,  y
>.  e.  ( B  |`  C ) ) )
6 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
76opelres 5401 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( B  |`  C )  <-> 
( <. x ,  y
>.  e.  B  /\  x  e.  C ) )
87biimpi 206 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( B  |`  C )  ->  ( <. x ,  y >.  e.  B  /\  x  e.  C
) )
98ancomd 467 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( B  |`  C )  ->  ( x  e.  C  /\  <. x ,  y >.  e.  B
) )
105, 9syl6com 37 . . . . . . 7  |-  ( A  e.  ( B  |`  C )  ->  ( A  =  <. x ,  y >.  ->  ( x  e.  C  /\  <. x ,  y >.  e.  B
) ) )
1110ancld 576 . . . . . 6  |-  ( A  e.  ( B  |`  C )  ->  ( A  =  <. x ,  y >.  ->  ( A  =  <. x ,  y
>.  /\  ( x  e.  C  /\  <. x ,  y >.  e.  B
) ) ) )
12 an12 838 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  (
x  e.  C  /\  <.
x ,  y >.  e.  B ) )  <->  ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) )
1311, 12syl6ib 241 . . . . 5  |-  ( A  e.  ( B  |`  C )  ->  ( A  =  <. x ,  y >.  ->  ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) ) )
14132eximdv 1848 . . . 4  |-  ( A  e.  ( B  |`  C )  ->  ( E. x E. y  A  =  <. x ,  y
>.  ->  E. x E. y
( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) ) )
153, 14mpd 15 . . 3  |-  ( A  e.  ( B  |`  C )  ->  E. x E. y ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
16 rexcom4 3225 . . . 4  |-  ( E. x  e.  C  E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  E. y E. x  e.  C  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
17 df-rex 2918 . . . . 5  |-  ( E. x  e.  C  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  <->  E. x ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) )
1817exbii 1774 . . . 4  |-  ( E. y E. x  e.  C  ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  E. y E. x ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
19 excom 2042 . . . 4  |-  ( E. y E. x ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )  <->  E. x E. y ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
2016, 18, 193bitri 286 . . 3  |-  ( E. x  e.  C  E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  E. x E. y ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
2115, 20sylibr 224 . 2  |-  ( A  e.  ( B  |`  C )  ->  E. x  e.  C  E. y
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
227simplbi2com 657 . . . . . 6  |-  ( x  e.  C  ->  ( <. x ,  y >.  e.  B  ->  <. x ,  y >.  e.  ( B  |`  C )
) )
234biimprd 238 . . . . . 6  |-  ( A  =  <. x ,  y
>.  ->  ( <. x ,  y >.  e.  ( B  |`  C )  ->  A  e.  ( B  |`  C ) ) )
2422, 23syl9 77 . . . . 5  |-  ( x  e.  C  ->  ( A  =  <. x ,  y >.  ->  ( <.
x ,  y >.  e.  B  ->  A  e.  ( B  |`  C ) ) ) )
2524impd 447 . . . 4  |-  ( x  e.  C  ->  (
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  ->  A  e.  ( B  |`  C ) ) )
2625exlimdv 1861 . . 3  |-  ( x  e.  C  ->  ( E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  ->  A  e.  ( B  |`  C ) ) )
2726rexlimiv 3027 . 2  |-  ( E. x  e.  C  E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  ->  A  e.  ( B  |`  C ) )
2821, 27impbii 199 1  |-  ( A  e.  ( B  |`  C )  <->  E. x  e.  C  E. y
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   <.cop 4183    |` cres 5116   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-res 5126
This theorem is referenced by:  elsnres  5436  eldm3  31651
  Copyright terms: Public domain W3C validator