| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elres | Structured version Visualization version Unicode version | ||
| Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) |
| Ref | Expression |
|---|---|
| elres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5426 |
. . . . 5
| |
| 2 | elrel 5222 |
. . . . 5
| |
| 3 | 1, 2 | mpan 706 |
. . . 4
|
| 4 | eleq1 2689 |
. . . . . . . . 9
| |
| 5 | 4 | biimpd 219 |
. . . . . . . 8
|
| 6 | vex 3203 |
. . . . . . . . . . 11
| |
| 7 | 6 | opelres 5401 |
. . . . . . . . . 10
|
| 8 | 7 | biimpi 206 |
. . . . . . . . 9
|
| 9 | 8 | ancomd 467 |
. . . . . . . 8
|
| 10 | 5, 9 | syl6com 37 |
. . . . . . 7
|
| 11 | 10 | ancld 576 |
. . . . . 6
|
| 12 | an12 838 |
. . . . . 6
| |
| 13 | 11, 12 | syl6ib 241 |
. . . . 5
|
| 14 | 13 | 2eximdv 1848 |
. . . 4
|
| 15 | 3, 14 | mpd 15 |
. . 3
|
| 16 | rexcom4 3225 |
. . . 4
| |
| 17 | df-rex 2918 |
. . . . 5
| |
| 18 | 17 | exbii 1774 |
. . . 4
|
| 19 | excom 2042 |
. . . 4
| |
| 20 | 16, 18, 19 | 3bitri 286 |
. . 3
|
| 21 | 15, 20 | sylibr 224 |
. 2
|
| 22 | 7 | simplbi2com 657 |
. . . . . 6
|
| 23 | 4 | biimprd 238 |
. . . . . 6
|
| 24 | 22, 23 | syl9 77 |
. . . . 5
|
| 25 | 24 | impd 447 |
. . . 4
|
| 26 | 25 | exlimdv 1861 |
. . 3
|
| 27 | 26 | rexlimiv 3027 |
. 2
|
| 28 | 21, 27 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-rel 5121 df-res 5126 |
| This theorem is referenced by: elsnres 5436 eldm3 31651 |
| Copyright terms: Public domain | W3C validator |