MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeuel Structured version   Visualization version   Unicode version

Theorem eqeuel 3941
Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
eqeuel  |-  ( ( A  =/=  (/)  /\  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  x  =  y ) )  ->  E! x  x  e.  A )
Distinct variable group:    x, y, A

Proof of Theorem eqeuel
StepHypRef Expression
1 n0 3931 . . . 4  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
21biimpi 206 . . 3  |-  ( A  =/=  (/)  ->  E. x  x  e.  A )
32anim1i 592 . 2  |-  ( ( A  =/=  (/)  /\  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  x  =  y ) )  ->  ( E. x  x  e.  A  /\  A. x A. y
( ( x  e.  A  /\  y  e.  A )  ->  x  =  y ) ) )
4 eleq1w 2684 . . 3  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
54eu4 2518 . 2  |-  ( E! x  x  e.  A  <->  ( E. x  x  e.  A  /\  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  x  =  y ) ) )
63, 5sylibr 224 1  |-  ( ( A  =/=  (/)  /\  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  x  =  y ) )  ->  E! x  x  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704    e. wcel 1990   E!weu 2470    =/= wne 2794   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  frgr2wwlk1  27193
  Copyright terms: Public domain W3C validator