MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlk1 Structured version   Visualization version   Unicode version

Theorem frgr2wwlk1 27193
Description: In a friendship graph, there is exactly one walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 4-Jan-2022.)
Hypothesis
Ref Expression
frgr2wwlkeu.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
frgr2wwlk1  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  ( # `
 ( A ( 2 WWalksNOn  G ) B ) )  =  1 )

Proof of Theorem frgr2wwlk1
Dummy variables  c 
d  t  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgr2wwlkeu.v . . . 4  |-  V  =  (Vtx `  G )
21frgr2wwlkn0 27192 . . 3  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  ( A ( 2 WWalksNOn  G
) B )  =/=  (/) )
31elwwlks2ons3 26848 . . . . . . . 8  |-  ( ( G  e. FriendGraph  /\  A  e.  V  /\  B  e.  V )  ->  (
w  e.  ( A ( 2 WWalksNOn  G ) B )  <->  E. d  e.  V  ( w  =  <" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) ) )
433expb 1266 . . . . . . 7  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( w  e.  ( A ( 2 WWalksNOn  G
) B )  <->  E. d  e.  V  ( w  =  <" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) ) )
543adant3 1081 . . . . . 6  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  (
w  e.  ( A ( 2 WWalksNOn  G ) B )  <->  E. d  e.  V  ( w  =  <" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) ) )
61elwwlks2ons3 26848 . . . . . . . 8  |-  ( ( G  e. FriendGraph  /\  A  e.  V  /\  B  e.  V )  ->  (
t  e.  ( A ( 2 WWalksNOn  G ) B )  <->  E. c  e.  V  ( t  =  <" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) ) )
763expb 1266 . . . . . . 7  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( t  e.  ( A ( 2 WWalksNOn  G
) B )  <->  E. c  e.  V  ( t  =  <" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) ) )
873adant3 1081 . . . . . 6  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  (
t  e.  ( A ( 2 WWalksNOn  G ) B )  <->  E. c  e.  V  ( t  =  <" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) ) )
95, 8anbi12d 747 . . . . 5  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  (
( w  e.  ( A ( 2 WWalksNOn  G
) B )  /\  t  e.  ( A
( 2 WWalksNOn  G ) B ) )  <->  ( E. d  e.  V  (
w  =  <" A
d B ">  /\ 
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  /\  E. c  e.  V  ( t  = 
<" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) ) ) )
101frgr2wwlkeu 27191 . . . . . 6  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  E! x  e.  V  <" A x B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )
11 s3eq2 13615 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  <" A x B ">  =  <" A y B "> )
1211eleq1d 2686 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  <->  <" A
y B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) )
1312reu4 3400 . . . . . . . . . . . 12  |-  ( E! x  e.  V  <" A x B ">  e.  ( A ( 2 WWalksNOn  G ) B )  <-> 
( E. x  e.  V  <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  A. x  e.  V  A. y  e.  V  (
( <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  x  =  y ) ) )
14 s3eq2 13615 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  d  ->  <" A x B ">  =  <" A d B "> )
1514eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( x  =  d  ->  ( <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  <->  <" A
d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) )
1615anbi1d 741 . . . . . . . . . . . . . . . 16  |-  ( x  =  d  ->  (
( <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  <-> 
( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) ) ) )
17 equequ1 1952 . . . . . . . . . . . . . . . 16  |-  ( x  =  d  ->  (
x  =  y  <->  d  =  y ) )
1816, 17imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( x  =  d  ->  (
( ( <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  x  =  y )  <->  ( ( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  y ) ) )
19 s3eq2 13615 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  c  ->  <" A
y B ">  =  <" A c B "> )
2019eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( y  =  c  ->  ( <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B )  <->  <" A
c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) )
2120anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( y  =  c  ->  (
( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  <-> 
( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) ) ) )
22 equequ2 1953 . . . . . . . . . . . . . . . 16  |-  ( y  =  c  ->  (
d  =  y  <->  d  =  c ) )
2321, 22imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( y  =  c  ->  (
( ( <" A
d B ">  e.  ( A ( 2 WWalksNOn  G ) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  y )  <->  ( ( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c ) ) )
2418, 23rspc2va 3323 . . . . . . . . . . . . . 14  |-  ( ( ( d  e.  V  /\  c  e.  V
)  /\  A. x  e.  V  A. y  e.  V  ( ( <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  x  =  y ) )  ->  (
( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c ) )
25 pm3.35 611 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( <" A
d B ">  e.  ( A ( 2 WWalksNOn  G ) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  /\  ( ( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c ) )  ->  d  =  c )
26 s3eq2 13615 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( c  =  d  ->  <" A
c B ">  =  <" A d B "> )
2726equcoms 1947 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( d  =  c  ->  <" A
c B ">  =  <" A d B "> )
2827adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( d  =  c  /\  ( t  =  <" A c B ">  /\  w  =  <" A d B "> ) )  ->  <" A
c B ">  =  <" A d B "> )
29 eqeq12 2635 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( t  =  <" A
c B ">  /\  w  =  <" A
d B "> )  ->  ( t  =  w  <->  <" A c B ">  =  <" A d B "> ) )
3029adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( d  =  c  /\  ( t  =  <" A c B ">  /\  w  =  <" A d B "> ) )  ->  (
t  =  w  <->  <" A
c B ">  =  <" A d B "> )
)
3128, 30mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( d  =  c  /\  ( t  =  <" A c B ">  /\  w  =  <" A d B "> ) )  ->  t  =  w )
3231equcomd 1946 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( d  =  c  /\  ( t  =  <" A c B ">  /\  w  =  <" A d B "> ) )  ->  w  =  t )
3332ex 450 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d  =  c  ->  (
( t  =  <" A c B ">  /\  w  =  <" A d B "> )  ->  w  =  t ) )
3425, 33syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( <" A
d B ">  e.  ( A ( 2 WWalksNOn  G ) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  /\  ( ( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c ) )  ->  (
( t  =  <" A c B ">  /\  w  =  <" A d B "> )  ->  w  =  t ) )
3534ex 450 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  ( ( (
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c )  ->  ( (
t  =  <" A
c B ">  /\  w  =  <" A
d B "> )  ->  w  =  t ) ) )
3635com23 86 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  ( ( t  =  <" A c B ">  /\  w  =  <" A d B "> )  ->  ( ( ( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c )  ->  w  =  t ) ) )
3736exp4b 632 . . . . . . . . . . . . . . . . . . 19  |-  ( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  -> 
( <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B )  -> 
( t  =  <" A c B ">  ->  ( w  = 
<" A d B ">  ->  (
( ( <" A
d B ">  e.  ( A ( 2 WWalksNOn  G ) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c )  ->  w  =  t ) ) ) ) )
3837com13 88 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  <" A c B ">  ->  (
<" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B )  -> 
( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  -> 
( w  =  <" A d B ">  ->  ( ( (
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c )  ->  w  =  t ) ) ) ) )
3938imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( t  =  <" A
c B ">  /\ 
<" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  ( <" A
d B ">  e.  ( A ( 2 WWalksNOn  G ) B )  ->  ( w  = 
<" A d B ">  ->  (
( ( <" A
d B ">  e.  ( A ( 2 WWalksNOn  G ) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c )  ->  w  =  t ) ) ) )
4039com13 88 . . . . . . . . . . . . . . . 16  |-  ( w  =  <" A d B ">  ->  (
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  -> 
( ( t  = 
<" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  ( (
( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c )  ->  w  =  t ) ) ) )
4140imp 445 . . . . . . . . . . . . . . 15  |-  ( ( w  =  <" A
d B ">  /\ 
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  ( ( t  =  <" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  ( (
( <" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c )  ->  w  =  t ) ) )
4241com13 88 . . . . . . . . . . . . . 14  |-  ( ( ( <" A
d B ">  e.  ( A ( 2 WWalksNOn  G ) B )  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  d  =  c )  ->  ( (
t  =  <" A
c B ">  /\ 
<" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  ( ( w  =  <" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  w  =  t ) ) )
4324, 42syl 17 . . . . . . . . . . . . 13  |-  ( ( ( d  e.  V  /\  c  e.  V
)  /\  A. x  e.  V  A. y  e.  V  ( ( <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  x  =  y ) )  ->  (
( t  =  <" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  ( ( w  =  <" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  w  =  t ) ) )
4443expcom 451 . . . . . . . . . . . 12  |-  ( A. x  e.  V  A. y  e.  V  (
( <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  <" A y B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  x  =  y )  ->  ( (
d  e.  V  /\  c  e.  V )  ->  ( ( t  = 
<" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  ( (
w  =  <" A
d B ">  /\ 
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  w  =  t ) ) ) )
4513, 44simplbiim 659 . . . . . . . . . . 11  |-  ( E! x  e.  V  <" A x B ">  e.  ( A ( 2 WWalksNOn  G ) B )  ->  ( ( d  e.  V  /\  c  e.  V )  ->  (
( t  =  <" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  ( ( w  =  <" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  w  =  t ) ) ) )
4645impl 650 . . . . . . . . . 10  |-  ( ( ( E! x  e.  V  <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  d  e.  V )  /\  c  e.  V
)  ->  ( (
t  =  <" A
c B ">  /\ 
<" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  ( ( w  =  <" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  w  =  t ) ) )
4746rexlimdva 3031 . . . . . . . . 9  |-  ( ( E! x  e.  V  <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  d  e.  V )  ->  ( E. c  e.  V  ( t  = 
<" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  ( (
w  =  <" A
d B ">  /\ 
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  w  =  t ) ) )
4847com23 86 . . . . . . . 8  |-  ( ( E! x  e.  V  <" A x B ">  e.  ( A ( 2 WWalksNOn  G
) B )  /\  d  e.  V )  ->  ( ( w  = 
<" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  ( E. c  e.  V  (
t  =  <" A
c B ">  /\ 
<" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  w  =  t ) ) )
4948rexlimdva 3031 . . . . . . 7  |-  ( E! x  e.  V  <" A x B ">  e.  ( A ( 2 WWalksNOn  G ) B )  ->  ( E. d  e.  V  ( w  =  <" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  ->  ( E. c  e.  V  (
t  =  <" A
c B ">  /\ 
<" A c B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  w  =  t ) ) )
5049impd 447 . . . . . 6  |-  ( E! x  e.  V  <" A x B ">  e.  ( A ( 2 WWalksNOn  G ) B )  ->  ( ( E. d  e.  V  ( w  =  <" A
d B ">  /\ 
<" A d B ">  e.  ( A ( 2 WWalksNOn  G
) B ) )  /\  E. c  e.  V  ( t  = 
<" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) )  ->  w  =  t ) )
5110, 50syl 17 . . . . 5  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  (
( E. d  e.  V  ( w  = 
<" A d B ">  /\  <" A d B ">  e.  ( A ( 2 WWalksNOn  G ) B ) )  /\  E. c  e.  V  ( t  =  <" A c B ">  /\  <" A c B ">  e.  ( A ( 2 WWalksNOn  G ) B ) ) )  ->  w  =  t ) )
529, 51sylbid 230 . . . 4  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  (
( w  e.  ( A ( 2 WWalksNOn  G
) B )  /\  t  e.  ( A
( 2 WWalksNOn  G ) B ) )  ->  w  =  t )
)
5352alrimivv 1856 . . 3  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  A. w A. t ( ( w  e.  ( A ( 2 WWalksNOn  G ) B )  /\  t  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  w  =  t ) )
54 eqeuel 3941 . . 3  |-  ( ( ( A ( 2 WWalksNOn  G ) B )  =/=  (/)  /\  A. w A. t ( ( w  e.  ( A ( 2 WWalksNOn  G ) B )  /\  t  e.  ( A ( 2 WWalksNOn  G
) B ) )  ->  w  =  t ) )  ->  E! w  w  e.  ( A ( 2 WWalksNOn  G
) B ) )
552, 53, 54syl2anc 693 . 2  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  E! w  w  e.  ( A ( 2 WWalksNOn  G
) B ) )
56 ovex 6678 . . 3  |-  ( A ( 2 WWalksNOn  G ) B )  e.  _V
57 euhash1 13208 . . 3  |-  ( ( A ( 2 WWalksNOn  G
) B )  e. 
_V  ->  ( ( # `  ( A ( 2 WWalksNOn  G ) B ) )  =  1  <->  E! w  w  e.  ( A ( 2 WWalksNOn  G
) B ) ) )
5856, 57mp1i 13 . 2  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  (
( # `  ( A ( 2 WWalksNOn  G ) B ) )  =  1  <->  E! w  w  e.  ( A ( 2 WWalksNOn  G ) B ) ) )
5955, 58mpbird 247 1  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  ->  ( # `
 ( A ( 2 WWalksNOn  G ) B ) )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   E!weu 2470    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650   1c1 9937   2c2 11070   #chash 13117   <"cs3 13587  Vtxcvtx 25874   WWalksNOn cwwlksnon 26719   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-frgr 27121
This theorem is referenced by:  frgr2wsp1  27194
  Copyright terms: Public domain W3C validator