MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   Unicode version

Theorem equcomd 1946
Description: Deduction form of equcom 1945, symmetry of equality. For the versions for classes, see eqcom 2629 and eqcomd 2628. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1  |-  ( ph  ->  x  =  y )
Assertion
Ref Expression
equcomd  |-  ( ph  ->  y  =  x )

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2  |-  ( ph  ->  x  =  y )
2 equcom 1945 . 2  |-  ( x  =  y  <->  y  =  x )
31, 2sylib 208 1  |-  ( ph  ->  y  =  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  sndisj  4644  fsumcom2  14505  fprodcom2  14714  catideu  16336  cusgrfilem2  26352  frgr2wwlk1  27193  bj-ssbequ1  32644  bj-nfcsym  32886  sprsymrelf1lem  41741
  Copyright terms: Public domain W3C validator