MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcom2 Structured version   Visualization version   Unicode version

Theorem fprodcom2 14714
Description: Interchange order of multiplication. Note that  B ( j ) and  D ( k ) are not necessarily constant expressions. (Contributed by Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
Hypotheses
Ref Expression
fprodcom2.1  |-  ( ph  ->  A  e.  Fin )
fprodcom2.2  |-  ( ph  ->  C  e.  Fin )
fprodcom2.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fprodcom2.4  |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  B )  <->  ( k  e.  C  /\  j  e.  D ) ) )
fprodcom2.5  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  E  e.  CC )
Assertion
Ref Expression
fprodcom2  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  E  =  prod_ k  e.  C  prod_ j  e.  D  E
)
Distinct variable groups:    A, j,
k    B, k    C, j, k    D, j    ph, j,
k
Allowed substitution hints:    B( j)    D( k)    E( j, k)

Proof of Theorem fprodcom2
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5227 . . . . . . . . 9  |-  Rel  ( { j }  X.  B )
21rgenw 2924 . . . . . . . 8  |-  A. j  e.  A  Rel  ( { j }  X.  B
)
3 reliun 5239 . . . . . . . 8  |-  ( Rel  U_ j  e.  A  ( { j }  X.  B )  <->  A. j  e.  A  Rel  ( { j }  X.  B
) )
42, 3mpbir 221 . . . . . . 7  |-  Rel  U_ j  e.  A  ( {
j }  X.  B
)
5 relcnv 5503 . . . . . . 7  |-  Rel  `' U_ k  e.  C  ( { k }  X.  D )
6 ancom 466 . . . . . . . . . . . 12  |-  ( ( x  =  j  /\  y  =  k )  <->  ( y  =  k  /\  x  =  j )
)
7 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
8 vex 3203 . . . . . . . . . . . . 13  |-  y  e. 
_V
97, 8opth 4945 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  =  <. j ,  k
>. 
<->  ( x  =  j  /\  y  =  k ) )
108, 7opth 4945 . . . . . . . . . . . 12  |-  ( <.
y ,  x >.  = 
<. k ,  j >.  <->  ( y  =  k  /\  x  =  j )
)
116, 9, 103bitr4i 292 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  =  <. j ,  k
>. 
<-> 
<. y ,  x >.  = 
<. k ,  j >.
)
1211a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( <. x ,  y
>.  =  <. j ,  k >.  <->  <. y ,  x >.  =  <. k ,  j
>. ) )
13 fprodcom2.4 . . . . . . . . . 10  |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  B )  <->  ( k  e.  C  /\  j  e.  D ) ) )
1412, 13anbi12d 747 . . . . . . . . 9  |-  ( ph  ->  ( ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  B )
)  <->  ( <. y ,  x >.  =  <. k ,  j >.  /\  (
k  e.  C  /\  j  e.  D )
) ) )
15142exbidv 1852 . . . . . . . 8  |-  ( ph  ->  ( E. j E. k ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  B )
)  <->  E. j E. k
( <. y ,  x >.  =  <. k ,  j
>.  /\  ( k  e.  C  /\  j  e.  D ) ) ) )
16 eliunxp 5259 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  B )  <->  E. j E. k ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  B )
) )
177, 8opelcnv 5304 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  `' U_ k  e.  C  ( { k }  X.  D )  <->  <. y ,  x >.  e.  U_ k  e.  C  ( {
k }  X.  D
) )
18 eliunxp 5259 . . . . . . . . 9  |-  ( <.
y ,  x >.  e. 
U_ k  e.  C  ( { k }  X.  D )  <->  E. k E. j ( <. y ,  x >.  =  <. k ,  j >.  /\  (
k  e.  C  /\  j  e.  D )
) )
19 excom 2042 . . . . . . . . 9  |-  ( E. k E. j (
<. y ,  x >.  = 
<. k ,  j >.  /\  ( k  e.  C  /\  j  e.  D
) )  <->  E. j E. k ( <. y ,  x >.  =  <. k ,  j >.  /\  (
k  e.  C  /\  j  e.  D )
) )
2017, 18, 193bitri 286 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  `' U_ k  e.  C  ( { k }  X.  D )  <->  E. j E. k ( <. y ,  x >.  =  <. k ,  j >.  /\  (
k  e.  C  /\  j  e.  D )
) )
2115, 16, 203bitr4g 303 . . . . . . 7  |-  ( ph  ->  ( <. x ,  y
>.  e.  U_ j  e.  A  ( { j }  X.  B )  <->  <. x ,  y >.  e.  `' U_ k  e.  C  ( { k }  X.  D ) ) )
224, 5, 21eqrelrdv 5216 . . . . . 6  |-  ( ph  ->  U_ j  e.  A  ( { j }  X.  B )  =  `' U_ k  e.  C  ( { k }  X.  D ) )
23 nfcv 2764 . . . . . . 7  |-  F/_ x
( { j }  X.  B )
24 nfcv 2764 . . . . . . . 8  |-  F/_ j { x }
25 nfcsb1v 3549 . . . . . . . 8  |-  F/_ j [_ x  /  j ]_ B
2624, 25nfxp 5142 . . . . . . 7  |-  F/_ j
( { x }  X.  [_ x  /  j ]_ B )
27 sneq 4187 . . . . . . . 8  |-  ( j  =  x  ->  { j }  =  { x } )
28 csbeq1a 3542 . . . . . . . 8  |-  ( j  =  x  ->  B  =  [_ x  /  j ]_ B )
2927, 28xpeq12d 5140 . . . . . . 7  |-  ( j  =  x  ->  ( { j }  X.  B )  =  ( { x }  X.  [_ x  /  j ]_ B ) )
3023, 26, 29cbviun 4557 . . . . . 6  |-  U_ j  e.  A  ( {
j }  X.  B
)  =  U_ x  e.  A  ( {
x }  X.  [_ x  /  j ]_ B
)
31 nfcv 2764 . . . . . . . 8  |-  F/_ y
( { k }  X.  D )
32 nfcv 2764 . . . . . . . . 9  |-  F/_ k { y }
33 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ k [_ y  /  k ]_ D
3432, 33nfxp 5142 . . . . . . . 8  |-  F/_ k
( { y }  X.  [_ y  / 
k ]_ D )
35 sneq 4187 . . . . . . . . 9  |-  ( k  =  y  ->  { k }  =  { y } )
36 csbeq1a 3542 . . . . . . . . 9  |-  ( k  =  y  ->  D  =  [_ y  /  k ]_ D )
3735, 36xpeq12d 5140 . . . . . . . 8  |-  ( k  =  y  ->  ( { k }  X.  D )  =  ( { y }  X.  [_ y  /  k ]_ D ) )
3831, 34, 37cbviun 4557 . . . . . . 7  |-  U_ k  e.  C  ( {
k }  X.  D
)  =  U_ y  e.  C  ( {
y }  X.  [_ y  /  k ]_ D
)
3938cnveqi 5297 . . . . . 6  |-  `' U_ k  e.  C  ( { k }  X.  D )  =  `' U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D )
4022, 30, 393eqtr3g 2679 . . . . 5  |-  ( ph  ->  U_ x  e.  A  ( { x }  X.  [_ x  /  j ]_ B )  =  `' U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) )
4140prodeq1d 14651 . . . 4  |-  ( ph  ->  prod_ z  e.  U_  x  e.  A  ( { x }  X.  [_ x  /  j ]_ B ) [_ ( 2nd `  z )  / 
k ]_ [_ ( 1st `  z )  /  j ]_ E  =  prod_ z  e.  `'  U_ y  e.  C  ( {
y }  X.  [_ y  /  k ]_ D
) [_ ( 2nd `  z
)  /  k ]_ [_ ( 1st `  z
)  /  j ]_ E )
428, 7op1std 7178 . . . . . . 7  |-  ( w  =  <. y ,  x >.  ->  ( 1st `  w
)  =  y )
4342csbeq1d 3540 . . . . . 6  |-  ( w  =  <. y ,  x >.  ->  [_ ( 1st `  w
)  /  k ]_ [_ ( 2nd `  w
)  /  j ]_ E  =  [_ y  / 
k ]_ [_ ( 2nd `  w )  /  j ]_ E )
448, 7op2ndd 7179 . . . . . . . 8  |-  ( w  =  <. y ,  x >.  ->  ( 2nd `  w
)  =  x )
4544csbeq1d 3540 . . . . . . 7  |-  ( w  =  <. y ,  x >.  ->  [_ ( 2nd `  w
)  /  j ]_ E  =  [_ x  / 
j ]_ E )
4645csbeq2dv 3992 . . . . . 6  |-  ( w  =  <. y ,  x >.  ->  [_ y  /  k ]_ [_ ( 2nd `  w
)  /  j ]_ E  =  [_ y  / 
k ]_ [_ x  / 
j ]_ E )
4743, 46eqtrd 2656 . . . . 5  |-  ( w  =  <. y ,  x >.  ->  [_ ( 1st `  w
)  /  k ]_ [_ ( 2nd `  w
)  /  j ]_ E  =  [_ y  / 
k ]_ [_ x  / 
j ]_ E )
487, 8op2ndd 7179 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( 2nd `  z
)  =  y )
4948csbeq1d 3540 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  [_ ( 2nd `  z
)  /  k ]_ [_ ( 1st `  z
)  /  j ]_ E  =  [_ y  / 
k ]_ [_ ( 1st `  z )  /  j ]_ E )
507, 8op1std 7178 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( 1st `  z
)  =  x )
5150csbeq1d 3540 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  [_ ( 1st `  z
)  /  j ]_ E  =  [_ x  / 
j ]_ E )
5251csbeq2dv 3992 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  [_ y  /  k ]_ [_ ( 1st `  z
)  /  j ]_ E  =  [_ y  / 
k ]_ [_ x  / 
j ]_ E )
5349, 52eqtrd 2656 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  [_ ( 2nd `  z
)  /  k ]_ [_ ( 1st `  z
)  /  j ]_ E  =  [_ y  / 
k ]_ [_ x  / 
j ]_ E )
54 fprodcom2.2 . . . . . 6  |-  ( ph  ->  C  e.  Fin )
55 snfi 8038 . . . . . . . 8  |-  { y }  e.  Fin
56 fprodcom2.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  Fin )
5756adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  Fin )
5833, 36opeliunxp2f 7336 . . . . . . . . . . . . . . . 16  |-  ( <.
y ,  x >.  e. 
U_ k  e.  C  ( { k }  X.  D )  <->  ( y  e.  C  /\  x  e.  [_ y  /  k ]_ D ) )
5917, 58sylbbr 226 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  C  /\  x  e.  [_ y  / 
k ]_ D )  ->  <. x ,  y >.  e.  `' U_ k  e.  C  ( { k }  X.  D ) )
6059adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  C  /\  x  e.  [_ y  /  k ]_ D ) )  ->  <. x ,  y >.  e.  `' U_ k  e.  C  ( { k }  X.  D ) )
6122adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  C  /\  x  e.  [_ y  /  k ]_ D ) )  ->  U_ j  e.  A  ( { j }  X.  B )  =  `' U_ k  e.  C  ( { k }  X.  D ) )
6260, 61eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  C  /\  x  e.  [_ y  /  k ]_ D ) )  ->  <. x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  B ) )
63 eliun 4524 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  B )  <->  E. j  e.  A  <. x ,  y >.  e.  ( { j }  X.  B ) )
6462, 63sylib 208 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  C  /\  x  e.  [_ y  /  k ]_ D ) )  ->  E. j  e.  A  <. x ,  y >.  e.  ( { j }  X.  B ) )
65 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  A  /\  <.
x ,  y >.  e.  ( { j }  X.  B ) )  ->  <. x ,  y
>.  e.  ( { j }  X.  B ) )
66 opelxp 5146 . . . . . . . . . . . . . . . . 17  |-  ( <.
x ,  y >.  e.  ( { j }  X.  B )  <->  ( x  e.  { j }  /\  y  e.  B )
)
6765, 66sylib 208 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  A  /\  <.
x ,  y >.  e.  ( { j }  X.  B ) )  ->  ( x  e. 
{ j }  /\  y  e.  B )
)
6867simpld 475 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  A  /\  <.
x ,  y >.  e.  ( { j }  X.  B ) )  ->  x  e.  {
j } )
69 elsni 4194 . . . . . . . . . . . . . . 15  |-  ( x  e.  { j }  ->  x  =  j )
7068, 69syl 17 . . . . . . . . . . . . . 14  |-  ( ( j  e.  A  /\  <.
x ,  y >.  e.  ( { j }  X.  B ) )  ->  x  =  j )
71 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( j  e.  A  /\  <.
x ,  y >.  e.  ( { j }  X.  B ) )  ->  j  e.  A
)
7270, 71eqeltrd 2701 . . . . . . . . . . . . 13  |-  ( ( j  e.  A  /\  <.
x ,  y >.  e.  ( { j }  X.  B ) )  ->  x  e.  A
)
7372rexlimiva 3028 . . . . . . . . . . . 12  |-  ( E. j  e.  A  <. x ,  y >.  e.  ( { j }  X.  B )  ->  x  e.  A )
7464, 73syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  C  /\  x  e.  [_ y  /  k ]_ D ) )  ->  x  e.  A )
7574expr 643 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  C )  ->  (
x  e.  [_ y  /  k ]_ D  ->  x  e.  A ) )
7675ssrdv 3609 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  C )  ->  [_ y  /  k ]_ D  C_  A )
7757, 76ssfid 8183 . . . . . . . 8  |-  ( (
ph  /\  y  e.  C )  ->  [_ y  /  k ]_ D  e.  Fin )
78 xpfi 8231 . . . . . . . 8  |-  ( ( { y }  e.  Fin  /\  [_ y  / 
k ]_ D  e.  Fin )  ->  ( { y }  X.  [_ y  /  k ]_ D
)  e.  Fin )
7955, 77, 78sylancr 695 . . . . . . 7  |-  ( (
ph  /\  y  e.  C )  ->  ( { y }  X.  [_ y  /  k ]_ D )  e.  Fin )
8079ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. y  e.  C  ( { y }  X.  [_ y  /  k ]_ D )  e.  Fin )
81 iunfi 8254 . . . . . 6  |-  ( ( C  e.  Fin  /\  A. y  e.  C  ( { y }  X.  [_ y  /  k ]_ D )  e.  Fin )  ->  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D )  e.  Fin )
8254, 80, 81syl2anc 693 . . . . 5  |-  ( ph  ->  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D )  e.  Fin )
83 reliun 5239 . . . . . . 7  |-  ( Rel  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D )  <->  A. y  e.  C  Rel  ( { y }  X.  [_ y  /  k ]_ D
) )
84 relxp 5227 . . . . . . . 8  |-  Rel  ( { y }  X.  [_ y  /  k ]_ D )
8584a1i 11 . . . . . . 7  |-  ( y  e.  C  ->  Rel  ( { y }  X.  [_ y  /  k ]_ D ) )
8683, 85mprgbir 2927 . . . . . 6  |-  Rel  U_ y  e.  C  ( {
y }  X.  [_ y  /  k ]_ D
)
8786a1i 11 . . . . 5  |-  ( ph  ->  Rel  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) )
88 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  w  e.  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) )  ->  w  e.  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D
) )
89 eliun 4524 . . . . . . . 8  |-  ( w  e.  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D
)  <->  E. y  e.  C  w  e.  ( {
y }  X.  [_ y  /  k ]_ D
) )
9088, 89sylib 208 . . . . . . 7  |-  ( (
ph  /\  w  e.  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) )  ->  E. y  e.  C  w  e.  ( {
y }  X.  [_ y  /  k ]_ D
) )
91 xp2nd 7199 . . . . . . . . . 10  |-  ( w  e.  ( { y }  X.  [_ y  /  k ]_ D
)  ->  ( 2nd `  w )  e.  [_ y  /  k ]_ D
)
9291adantl 482 . . . . . . . . 9  |-  ( ( y  e.  C  /\  w  e.  ( {
y }  X.  [_ y  /  k ]_ D
) )  ->  ( 2nd `  w )  e. 
[_ y  /  k ]_ D )
93 xp1st 7198 . . . . . . . . . . . 12  |-  ( w  e.  ( { y }  X.  [_ y  /  k ]_ D
)  ->  ( 1st `  w )  e.  {
y } )
9493adantl 482 . . . . . . . . . . 11  |-  ( ( y  e.  C  /\  w  e.  ( {
y }  X.  [_ y  /  k ]_ D
) )  ->  ( 1st `  w )  e. 
{ y } )
95 elsni 4194 . . . . . . . . . . 11  |-  ( ( 1st `  w )  e.  { y }  ->  ( 1st `  w
)  =  y )
9694, 95syl 17 . . . . . . . . . 10  |-  ( ( y  e.  C  /\  w  e.  ( {
y }  X.  [_ y  /  k ]_ D
) )  ->  ( 1st `  w )  =  y )
9796csbeq1d 3540 . . . . . . . . 9  |-  ( ( y  e.  C  /\  w  e.  ( {
y }  X.  [_ y  /  k ]_ D
) )  ->  [_ ( 1st `  w )  / 
k ]_ D  =  [_ y  /  k ]_ D
)
9892, 97eleqtrrd 2704 . . . . . . . 8  |-  ( ( y  e.  C  /\  w  e.  ( {
y }  X.  [_ y  /  k ]_ D
) )  ->  ( 2nd `  w )  e. 
[_ ( 1st `  w
)  /  k ]_ D )
9998rexlimiva 3028 . . . . . . 7  |-  ( E. y  e.  C  w  e.  ( { y }  X.  [_ y  /  k ]_ D
)  ->  ( 2nd `  w )  e.  [_ ( 1st `  w )  /  k ]_ D
)
10090, 99syl 17 . . . . . 6  |-  ( (
ph  /\  w  e.  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) )  -> 
( 2nd `  w
)  e.  [_ ( 1st `  w )  / 
k ]_ D )
101 simpl 473 . . . . . . . . . 10  |-  ( ( y  e.  C  /\  w  e.  ( {
y }  X.  [_ y  /  k ]_ D
) )  ->  y  e.  C )
10296, 101eqeltrd 2701 . . . . . . . . 9  |-  ( ( y  e.  C  /\  w  e.  ( {
y }  X.  [_ y  /  k ]_ D
) )  ->  ( 1st `  w )  e.  C )
103102rexlimiva 3028 . . . . . . . 8  |-  ( E. y  e.  C  w  e.  ( { y }  X.  [_ y  /  k ]_ D
)  ->  ( 1st `  w )  e.  C
)
10490, 103syl 17 . . . . . . 7  |-  ( (
ph  /\  w  e.  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) )  -> 
( 1st `  w
)  e.  C )
105 simpl 473 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  C  /\  x  e.  [_ y  /  k ]_ D ) )  ->  ph )
10625nfcri 2758 . . . . . . . . . . . 12  |-  F/ j  y  e.  [_ x  /  j ]_ B
10769equcomd 1946 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  { j }  ->  j  =  x )
108107, 28syl 17 . . . . . . . . . . . . . . . 16  |-  ( x  e.  { j }  ->  B  =  [_ x  /  j ]_ B
)
109108eleq2d 2687 . . . . . . . . . . . . . . 15  |-  ( x  e.  { j }  ->  ( y  e.  B  <->  y  e.  [_ x  /  j ]_ B
) )
110109biimpa 501 . . . . . . . . . . . . . 14  |-  ( ( x  e.  { j }  /\  y  e.  B )  ->  y  e.  [_ x  /  j ]_ B )
11166, 110sylbi 207 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  e.  ( { j }  X.  B )  -> 
y  e.  [_ x  /  j ]_ B
)
112111a1i 11 . . . . . . . . . . . 12  |-  ( j  e.  A  ->  ( <. x ,  y >.  e.  ( { j }  X.  B )  -> 
y  e.  [_ x  /  j ]_ B
) )
113106, 112rexlimi 3024 . . . . . . . . . . 11  |-  ( E. j  e.  A  <. x ,  y >.  e.  ( { j }  X.  B )  ->  y  e.  [_ x  /  j ]_ B )
11464, 113syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  C  /\  x  e.  [_ y  /  k ]_ D ) )  -> 
y  e.  [_ x  /  j ]_ B
)
115 fprodcom2.5 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  E  e.  CC )
116115ralrimivva 2971 . . . . . . . . . . . . 13  |-  ( ph  ->  A. j  e.  A  A. k  e.  B  E  e.  CC )
117 nfcsb1v 3549 . . . . . . . . . . . . . . . 16  |-  F/_ j [_ x  /  j ]_ E
118117nfel1 2779 . . . . . . . . . . . . . . 15  |-  F/ j
[_ x  /  j ]_ E  e.  CC
11925, 118nfral 2945 . . . . . . . . . . . . . 14  |-  F/ j A. k  e.  [_  x  /  j ]_ B [_ x  /  j ]_ E  e.  CC
120 csbeq1a 3542 . . . . . . . . . . . . . . . 16  |-  ( j  =  x  ->  E  =  [_ x  /  j ]_ E )
121120eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( j  =  x  ->  ( E  e.  CC  <->  [_ x  / 
j ]_ E  e.  CC ) )
12228, 121raleqbidv 3152 . . . . . . . . . . . . . 14  |-  ( j  =  x  ->  ( A. k  e.  B  E  e.  CC  <->  A. k  e.  [_  x  /  j ]_ B [_ x  / 
j ]_ E  e.  CC ) )
123119, 122rspc 3303 . . . . . . . . . . . . 13  |-  ( x  e.  A  ->  ( A. j  e.  A  A. k  e.  B  E  e.  CC  ->  A. k  e.  [_  x  /  j ]_ B [_ x  /  j ]_ E  e.  CC ) )
124116, 123mpan9 486 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  A. k  e.  [_  x  /  j ]_ B [_ x  / 
j ]_ E  e.  CC )
125 nfcsb1v 3549 . . . . . . . . . . . . . 14  |-  F/_ k [_ y  /  k ]_ [_ x  /  j ]_ E
126125nfel1 2779 . . . . . . . . . . . . 13  |-  F/ k
[_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC
127 csbeq1a 3542 . . . . . . . . . . . . . 14  |-  ( k  =  y  ->  [_ x  /  j ]_ E  =  [_ y  /  k ]_ [_ x  /  j ]_ E )
128127eleq1d 2686 . . . . . . . . . . . . 13  |-  ( k  =  y  ->  ( [_ x  /  j ]_ E  e.  CC  <->  [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC )
)
129126, 128rspc 3303 . . . . . . . . . . . 12  |-  ( y  e.  [_ x  / 
j ]_ B  ->  ( A. k  e.  [_  x  /  j ]_ B [_ x  /  j ]_ E  e.  CC  ->  [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC ) )
130124, 129syl5com 31 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
y  e.  [_ x  /  j ]_ B  ->  [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC ) )
131130impr 649 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  [_ x  /  j ]_ B ) )  ->  [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC )
132105, 74, 114, 131syl12anc 1324 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  C  /\  x  e.  [_ y  /  k ]_ D ) )  ->  [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC )
133132ralrimivva 2971 . . . . . . . 8  |-  ( ph  ->  A. y  e.  C  A. x  e.  [_  y  /  k ]_ D [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC )
134133adantr 481 . . . . . . 7  |-  ( (
ph  /\  w  e.  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) )  ->  A. y  e.  C  A. x  e.  [_  y  /  k ]_ D [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC )
135 csbeq1 3536 . . . . . . . . 9  |-  ( y  =  ( 1st `  w
)  ->  [_ y  / 
k ]_ D  =  [_ ( 1st `  w )  /  k ]_ D
)
136 csbeq1 3536 . . . . . . . . . 10  |-  ( y  =  ( 1st `  w
)  ->  [_ y  / 
k ]_ [_ x  / 
j ]_ E  =  [_ ( 1st `  w )  /  k ]_ [_ x  /  j ]_ E
)
137136eleq1d 2686 . . . . . . . . 9  |-  ( y  =  ( 1st `  w
)  ->  ( [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC  <->  [_ ( 1st `  w
)  /  k ]_ [_ x  /  j ]_ E  e.  CC )
)
138135, 137raleqbidv 3152 . . . . . . . 8  |-  ( y  =  ( 1st `  w
)  ->  ( A. x  e.  [_  y  / 
k ]_ D [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC  <->  A. x  e.  [_  ( 1st `  w )  /  k ]_ D [_ ( 1st `  w
)  /  k ]_ [_ x  /  j ]_ E  e.  CC )
)
139138rspcv 3305 . . . . . . 7  |-  ( ( 1st `  w )  e.  C  ->  ( A. y  e.  C  A. x  e.  [_  y  /  k ]_ D [_ y  /  k ]_ [_ x  /  j ]_ E  e.  CC  ->  A. x  e.  [_  ( 1st `  w )  /  k ]_ D [_ ( 1st `  w
)  /  k ]_ [_ x  /  j ]_ E  e.  CC )
)
140104, 134, 139sylc 65 . . . . . 6  |-  ( (
ph  /\  w  e.  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) )  ->  A. x  e.  [_  ( 1st `  w )  / 
k ]_ D [_ ( 1st `  w )  / 
k ]_ [_ x  / 
j ]_ E  e.  CC )
141 csbeq1 3536 . . . . . . . . 9  |-  ( x  =  ( 2nd `  w
)  ->  [_ x  / 
j ]_ E  =  [_ ( 2nd `  w )  /  j ]_ E
)
142141csbeq2dv 3992 . . . . . . . 8  |-  ( x  =  ( 2nd `  w
)  ->  [_ ( 1st `  w )  /  k ]_ [_ x  /  j ]_ E  =  [_ ( 1st `  w )  / 
k ]_ [_ ( 2nd `  w )  /  j ]_ E )
143142eleq1d 2686 . . . . . . 7  |-  ( x  =  ( 2nd `  w
)  ->  ( [_ ( 1st `  w )  /  k ]_ [_ x  /  j ]_ E  e.  CC  <->  [_ ( 1st `  w
)  /  k ]_ [_ ( 2nd `  w
)  /  j ]_ E  e.  CC )
)
144143rspcv 3305 . . . . . 6  |-  ( ( 2nd `  w )  e.  [_ ( 1st `  w )  /  k ]_ D  ->  ( A. x  e.  [_  ( 1st `  w )  /  k ]_ D [_ ( 1st `  w )  /  k ]_ [_ x  /  j ]_ E  e.  CC  ->  [_ ( 1st `  w
)  /  k ]_ [_ ( 2nd `  w
)  /  j ]_ E  e.  CC )
)
145100, 140, 144sylc 65 . . . . 5  |-  ( (
ph  /\  w  e.  U_ y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) )  ->  [_ ( 1st `  w
)  /  k ]_ [_ ( 2nd `  w
)  /  j ]_ E  e.  CC )
14647, 53, 82, 87, 145fprodcnv 14713 . . . 4  |-  ( ph  ->  prod_ w  e.  U_  y  e.  C  ( { y }  X.  [_ y  /  k ]_ D ) [_ ( 1st `  w )  / 
k ]_ [_ ( 2nd `  w )  /  j ]_ E  =  prod_ z  e.  `'  U_ y  e.  C  ( {
y }  X.  [_ y  /  k ]_ D
) [_ ( 2nd `  z
)  /  k ]_ [_ ( 1st `  z
)  /  j ]_ E )
14741, 146eqtr4d 2659 . . 3  |-  ( ph  ->  prod_ z  e.  U_  x  e.  A  ( { x }  X.  [_ x  /  j ]_ B ) [_ ( 2nd `  z )  / 
k ]_ [_ ( 1st `  z )  /  j ]_ E  =  prod_ w  e.  U_  y  e.  C  ( { y }  X.  [_ y  /  k ]_ D
) [_ ( 1st `  w
)  /  k ]_ [_ ( 2nd `  w
)  /  j ]_ E )
148 fprodcom2.3 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
149148ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. j  e.  A  B  e.  Fin )
15025nfel1 2779 . . . . . 6  |-  F/ j
[_ x  /  j ]_ B  e.  Fin
15128eleq1d 2686 . . . . . 6  |-  ( j  =  x  ->  ( B  e.  Fin  <->  [_ x  / 
j ]_ B  e.  Fin ) )
152150, 151rspc 3303 . . . . 5  |-  ( x  e.  A  ->  ( A. j  e.  A  B  e.  Fin  ->  [_ x  /  j ]_ B  e.  Fin ) )
153149, 152mpan9 486 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  [_ x  /  j ]_ B  e.  Fin )
15453, 56, 153, 131fprod2d 14711 . . 3  |-  ( ph  ->  prod_ x  e.  A  prod_ y  e.  [_  x  /  j ]_ B [_ y  /  k ]_ [_ x  /  j ]_ E  =  prod_ z  e.  U_  x  e.  A  ( { x }  X.  [_ x  / 
j ]_ B ) [_ ( 2nd `  z )  /  k ]_ [_ ( 1st `  z )  / 
j ]_ E )
15547, 54, 77, 132fprod2d 14711 . . 3  |-  ( ph  ->  prod_ y  e.  C  prod_ x  e.  [_  y  /  k ]_ D [_ y  /  k ]_ [_ x  /  j ]_ E  =  prod_ w  e.  U_  y  e.  C  ( { y }  X.  [_ y  /  k ]_ D
) [_ ( 1st `  w
)  /  k ]_ [_ ( 2nd `  w
)  /  j ]_ E )
156147, 154, 1553eqtr4d 2666 . 2  |-  ( ph  ->  prod_ x  e.  A  prod_ y  e.  [_  x  /  j ]_ B [_ y  /  k ]_ [_ x  /  j ]_ E  =  prod_ y  e.  C  prod_ x  e.  [_  y  /  k ]_ D [_ y  / 
k ]_ [_ x  / 
j ]_ E )
157 nfcv 2764 . . 3  |-  F/_ x prod_ k  e.  B  E
158 nfcv 2764 . . . . 5  |-  F/_ j
y
159158, 117nfcsb 3551 . . . 4  |-  F/_ j [_ y  /  k ]_ [_ x  /  j ]_ E
16025, 159nfcprod 14641 . . 3  |-  F/_ j prod_ y  e.  [_  x  /  j ]_ B [_ y  /  k ]_ [_ x  /  j ]_ E
161 nfcv 2764 . . . . 5  |-  F/_ y E
162 nfcsb1v 3549 . . . . 5  |-  F/_ k [_ y  /  k ]_ E
163 csbeq1a 3542 . . . . 5  |-  ( k  =  y  ->  E  =  [_ y  /  k ]_ E )
164161, 162, 163cbvprodi 14647 . . . 4  |-  prod_ k  e.  B  E  =  prod_ y  e.  B  [_ y  /  k ]_ E
165120csbeq2dv 3992 . . . . . 6  |-  ( j  =  x  ->  [_ y  /  k ]_ E  =  [_ y  /  k ]_ [_ x  /  j ]_ E )
166165adantr 481 . . . . 5  |-  ( ( j  =  x  /\  y  e.  B )  ->  [_ y  /  k ]_ E  =  [_ y  /  k ]_ [_ x  /  j ]_ E
)
16728, 166prodeq12dv 14656 . . . 4  |-  ( j  =  x  ->  prod_ y  e.  B  [_ y  /  k ]_ E  =  prod_ y  e.  [_  x  /  j ]_ B [_ y  /  k ]_ [_ x  /  j ]_ E )
168164, 167syl5eq 2668 . . 3  |-  ( j  =  x  ->  prod_ k  e.  B  E  = 
prod_ y  e.  [_  x  /  j ]_ B [_ y  /  k ]_ [_ x  /  j ]_ E )
169157, 160, 168cbvprodi 14647 . 2  |-  prod_ j  e.  A  prod_ k  e.  B  E  =  prod_ x  e.  A  prod_ y  e.  [_  x  /  j ]_ B [_ y  / 
k ]_ [_ x  / 
j ]_ E
170 nfcv 2764 . . 3  |-  F/_ y prod_ j  e.  D  E
17133, 125nfcprod 14641 . . 3  |-  F/_ k prod_ x  e.  [_  y  /  k ]_ D [_ y  /  k ]_ [_ x  /  j ]_ E
172 nfcv 2764 . . . . 5  |-  F/_ x E
173172, 117, 120cbvprodi 14647 . . . 4  |-  prod_ j  e.  D  E  =  prod_ x  e.  D  [_ x  /  j ]_ E
174127adantr 481 . . . . 5  |-  ( ( k  =  y  /\  x  e.  D )  ->  [_ x  /  j ]_ E  =  [_ y  /  k ]_ [_ x  /  j ]_ E
)
17536, 174prodeq12dv 14656 . . . 4  |-  ( k  =  y  ->  prod_ x  e.  D  [_ x  /  j ]_ E  =  prod_ x  e.  [_  y  /  k ]_ D [_ y  /  k ]_ [_ x  /  j ]_ E )
176173, 175syl5eq 2668 . . 3  |-  ( k  =  y  ->  prod_ j  e.  D  E  = 
prod_ x  e.  [_  y  /  k ]_ D [_ y  /  k ]_ [_ x  /  j ]_ E )
177170, 171, 176cbvprodi 14647 . 2  |-  prod_ k  e.  C  prod_ j  e.  D  E  =  prod_ y  e.  C  prod_ x  e.  [_  y  /  k ]_ D [_ y  / 
k ]_ [_ x  / 
j ]_ E
178156, 169, 1773eqtr4g 2681 1  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  E  =  prod_ k  e.  C  prod_ j  e.  D  E
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   [_csb 3533   {csn 4177   <.cop 4183   U_ciun 4520    X. cxp 5112   `'ccnv 5113   Rel wrel 5119   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   Fincfn 7955   CCcc 9934   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  fprodcom  14716  fprod0diag  14717
  Copyright terms: Public domain W3C validator