Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngset Structured version   Visualization version   Unicode version

Theorem erngset 36088
Description: The division ring on trace-preserving endomorphisms for a fiducial co-atom  W. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
erngset.h  |-  H  =  ( LHyp `  K
)
erngset.t  |-  T  =  ( ( LTrn `  K
) `  W )
erngset.e  |-  E  =  ( ( TEndo `  K
) `  W )
erngset.d  |-  D  =  ( ( EDRing `  K
) `  W )
Assertion
Ref Expression
erngset  |-  ( ( K  e.  V  /\  W  e.  H )  ->  D  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. } )
Distinct variable groups:    f, s,
t, K    f, W, s, t
Allowed substitution hints:    D( t, f, s)    T( t, f, s)    E( t, f, s)    H( t, f, s)    V( t, f, s)

Proof of Theorem erngset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 erngset.d . . 3  |-  D  =  ( ( EDRing `  K
) `  W )
2 erngset.h . . . . 5  |-  H  =  ( LHyp `  K
)
32erngfset 36087 . . . 4  |-  ( K  e.  V  ->  ( EDRing `
 K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. } ) )
43fveq1d 6193 . . 3  |-  ( K  e.  V  ->  (
( EDRing `  K ) `  W )  =  ( ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. } ) `  W
) )
51, 4syl5eq 2668 . 2  |-  ( K  e.  V  ->  D  =  ( ( w  e.  H  |->  { <. (
Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. } ) `  W
) )
6 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  ( ( TEndo `  K ) `  W ) )
76opeq2d 4409 . . . . 5  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >.  =  <. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  W ) >. )
8 tpeq1 4277 . . . . . 6  |-  ( <.
( Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >.  =  <. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  W ) >.  ->  { <. (
Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. }  =  { <. ( Base `  ndx ) ,  ( ( TEndo `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. } )
9 erngset.e . . . . . . . 8  |-  E  =  ( ( TEndo `  K
) `  W )
109opeq2i 4406 . . . . . . 7  |-  <. ( Base `  ndx ) ,  E >.  =  <. (
Base `  ndx ) ,  ( ( TEndo `  K
) `  W ) >.
11 tpeq1 4277 . . . . . . 7  |-  ( <.
( Base `  ndx ) ,  E >.  =  <. (
Base `  ndx ) ,  ( ( TEndo `  K
) `  W ) >.  ->  { <. ( Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w
) ,  t  e.  ( ( TEndo `  K
) `  w )  |->  ( s  o.  t
) ) >. }  =  { <. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. } )
1210, 11ax-mp 5 . . . . . 6  |-  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w
) ,  t  e.  ( ( TEndo `  K
) `  w )  |->  ( s  o.  t
) ) >. }  =  { <. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. }
138, 12syl6eqr 2674 . . . . 5  |-  ( <.
( Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >.  =  <. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  W ) >.  ->  { <. (
Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. }  =  { <. ( Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w
) ,  t  e.  ( ( TEndo `  K
) `  w )  |->  ( s  o.  t
) ) >. } )
147, 13syl 17 . . . 4  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. }  =  { <. ( Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w
) ,  t  e.  ( ( TEndo `  K
) `  w )  |->  ( s  o.  t
) ) >. } )
156, 9syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  E )
16 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
17 erngset.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
1816, 17syl6eqr 2674 . . . . . . . 8  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  T )
19 eqidd 2623 . . . . . . . 8  |-  ( w  =  W  ->  (
( s `  f
)  o.  ( t `
 f ) )  =  ( ( s `
 f )  o.  ( t `  f
) ) )
2018, 19mpteq12dv 4733 . . . . . . 7  |-  ( w  =  W  ->  (
f  e.  ( (
LTrn `  K ) `  w )  |->  ( ( s `  f )  o.  ( t `  f ) ) )  =  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
2115, 15, 20mpt2eq123dv 6717 . . . . . 6  |-  ( w  =  W  ->  (
s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) )  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) )
2221opeq2d 4409 . . . . 5  |-  ( w  =  W  ->  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >.  =  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. )
2322tpeq2d 4281 . . . 4  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( f  e.  ( ( LTrn `  K
) `  w )  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w
) ,  t  e.  ( ( TEndo `  K
) `  w )  |->  ( s  o.  t
) ) >. }  =  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. } )
24 eqidd 2623 . . . . . . 7  |-  ( w  =  W  ->  (
s  o.  t )  =  ( s  o.  t ) )
2515, 15, 24mpt2eq123dv 6717 . . . . . 6  |-  ( w  =  W  ->  (
s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) )  =  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t
) ) )
2625opeq2d 4409 . . . . 5  |-  ( w  =  W  ->  <. ( .r `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >.  =  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. )
2726tpeq3d 4282 . . . 4  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w
) ,  t  e.  ( ( TEndo `  K
) `  w )  |->  ( s  o.  t
) ) >. }  =  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( s  o.  t ) ) >. } )
2814, 23, 273eqtrd 2660 . . 3  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. }  =  { <. ( Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. } )
29 eqid 2622 . . 3  |-  ( w  e.  H  |->  { <. (
Base `  ndx ) ,  ( ( TEndo `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. } )  =  ( w  e.  H  |->  {
<. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. } )
30 tpex 6957 . . 3  |-  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. }  e.  _V
3128, 29, 30fvmpt 6282 . 2  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( TEndo `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  t  e.  (
( TEndo `  K ) `  w )  |->  ( f  e.  ( ( LTrn `  K ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  K ) `  w ) ,  t  e.  ( ( TEndo `  K ) `  w
)  |->  ( s  o.  t ) ) >. } ) `  W
)  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. } )
325, 31sylan9eq 2676 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  D  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {ctp 4181   <.cop 4183    |-> cmpt 4729    o. ccom 5118   ` cfv 5888    |-> cmpt2 6652   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   EDRingcedring 36041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-edring 36045
This theorem is referenced by:  erngbase  36089  erngfplus  36090  erngfmul  36093
  Copyright terms: Public domain W3C validator