| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eu2 | Structured version Visualization version Unicode version | ||
| Description: An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.) (Proof shortened by Wolf Lammen, 2-Dec-2018.) |
| Ref | Expression |
|---|---|
| eu2.1 |
|
| Ref | Expression |
|---|---|
| eu2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu5 2496 |
. 2
| |
| 2 | eu2.1 |
. . . 4
| |
| 3 | 2 | mo3 2507 |
. . 3
|
| 4 | 3 | anbi2i 730 |
. 2
|
| 5 | 1, 4 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: reu2 3394 bnj1321 31095 |
| Copyright terms: Public domain | W3C validator |