| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu2 | Structured version Visualization version Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| reu2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . 3
| |
| 2 | 1 | eu2 2509 |
. 2
|
| 3 | df-reu 2919 |
. 2
| |
| 4 | df-rex 2918 |
. . 3
| |
| 5 | df-ral 2917 |
. . . 4
| |
| 6 | 19.21v 1868 |
. . . . . 6
| |
| 7 | nfv 1843 |
. . . . . . . . . . . . 13
| |
| 8 | nfs1v 2437 |
. . . . . . . . . . . . 13
| |
| 9 | 7, 8 | nfan 1828 |
. . . . . . . . . . . 12
|
| 10 | eleq1 2689 |
. . . . . . . . . . . . 13
| |
| 11 | sbequ12 2111 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | anbi12d 747 |
. . . . . . . . . . . 12
|
| 13 | 9, 12 | sbie 2408 |
. . . . . . . . . . 11
|
| 14 | 13 | anbi2i 730 |
. . . . . . . . . 10
|
| 15 | an4 865 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | bitri 264 |
. . . . . . . . 9
|
| 17 | 16 | imbi1i 339 |
. . . . . . . 8
|
| 18 | impexp 462 |
. . . . . . . 8
| |
| 19 | impexp 462 |
. . . . . . . 8
| |
| 20 | 17, 18, 19 | 3bitri 286 |
. . . . . . 7
|
| 21 | 20 | albii 1747 |
. . . . . 6
|
| 22 | df-ral 2917 |
. . . . . . 7
| |
| 23 | 22 | imbi2i 326 |
. . . . . 6
|
| 24 | 6, 21, 23 | 3bitr4i 292 |
. . . . 5
|
| 25 | 24 | albii 1747 |
. . . 4
|
| 26 | 5, 25 | bitr4i 267 |
. . 3
|
| 27 | 4, 26 | anbi12i 733 |
. 2
|
| 28 | 2, 3, 27 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-reu 2919 |
| This theorem is referenced by: reu2eqd 3403 disjinfi 39380 |
| Copyright terms: Public domain | W3C validator |