Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1321 Structured version   Visualization version   Unicode version

Theorem bnj1321 31095
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1321.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1321.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1321.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1321.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
Assertion
Ref Expression
bnj1321  |-  ( ( R  FrSe  A  /\  E. f ta )  ->  E! f ta )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f    R, d, f, x
Allowed substitution hints:    ta( x, f, d)    B( x, d)    C( x, f, d)    G( x)    Y( x, f, d)

Proof of Theorem bnj1321
Dummy variables  g 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . 2  |-  ( ( R  FrSe  A  /\  E. f ta )  ->  E. f ta )
2 simp1 1061 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  R  FrSe  A )
3 bnj1321.4 . . . . . . . . 9  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
43simplbi 476 . . . . . . . 8  |-  ( ta 
->  f  e.  C
)
543ad2ant2 1083 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  f  e.  C )
6 bnj1321.3 . . . . . . . . . . . . 13  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
7 nfab1 2766 . . . . . . . . . . . . 13  |-  F/_ f { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
86, 7nfcxfr 2762 . . . . . . . . . . . 12  |-  F/_ f C
98nfcri 2758 . . . . . . . . . . 11  |-  F/ f  g  e.  C
10 nfv 1843 . . . . . . . . . . 11  |-  F/ f dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
119, 10nfan 1828 . . . . . . . . . 10  |-  F/ f ( g  e.  C  /\  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
12 eleq1 2689 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f  e.  C  <->  g  e.  C ) )
13 dmeq 5324 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  dom  f  =  dom  g )
1413eqeq1d 2624 . . . . . . . . . . . 12  |-  ( f  =  g  ->  ( dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) )  <->  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
1512, 14anbi12d 747 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )  <-> 
( g  e.  C  /\  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) ) )
163, 15syl5bb 272 . . . . . . . . . 10  |-  ( f  =  g  ->  ( ta 
<->  ( g  e.  C  /\  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) ) )
1711, 16sbie 2408 . . . . . . . . 9  |-  ( [ g  /  f ] ta  <->  ( g  e.  C  /\  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R
) ) ) )
1817simplbi 476 . . . . . . . 8  |-  ( [ g  /  f ] ta  ->  g  e.  C )
19183ad2ant3 1084 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  g  e.  C )
20 bnj1321.1 . . . . . . . 8  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
21 bnj1321.2 . . . . . . . 8  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
22 eqid 2622 . . . . . . . 8  |-  ( dom  f  i^i  dom  g
)  =  ( dom  f  i^i  dom  g
)
2320, 21, 6, 22bnj1326 31094 . . . . . . 7  |-  ( ( R  FrSe  A  /\  f  e.  C  /\  g  e.  C )  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  ( g  |`  ( dom  f  i^i  dom  g )
) )
242, 5, 19, 23syl3anc 1326 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  ( g  |`  ( dom  f  i^i  dom  g )
) )
253simprbi 480 . . . . . . . . . 10  |-  ( ta 
->  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
26253ad2ant2 1083 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
2717simprbi 480 . . . . . . . . . 10  |-  ( [ g  /  f ] ta  ->  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
28273ad2ant3 1084 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
2926, 28eqtr4d 2659 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  dom  f  =  dom  g )
30 bnj1322 30893 . . . . . . . . 9  |-  ( dom  f  =  dom  g  ->  ( dom  f  i^i 
dom  g )  =  dom  f )
3130reseq2d 5396 . . . . . . . 8  |-  ( dom  f  =  dom  g  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  ( f  |`  dom  f ) )
3229, 31syl 17 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  ( f  |`  dom  f ) )
33 releq 5201 . . . . . . . . 9  |-  ( z  =  f  ->  ( Rel  z  <->  Rel  f ) )
3420, 21, 6bnj66 30930 . . . . . . . . 9  |-  ( z  e.  C  ->  Rel  z )
3533, 34vtoclga 3272 . . . . . . . 8  |-  ( f  e.  C  ->  Rel  f )
36 resdm 5441 . . . . . . . 8  |-  ( Rel  f  ->  ( f  |` 
dom  f )  =  f )
375, 35, 363syl 18 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( f  |`  dom  f
)  =  f )
3832, 37eqtrd 2656 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  f )
39 eqeq2 2633 . . . . . . . . . 10  |-  ( dom  f  =  dom  g  ->  ( ( dom  f  i^i  dom  g )  =  dom  f  <->  ( dom  f  i^i  dom  g )  =  dom  g ) )
4030, 39mpbid 222 . . . . . . . . 9  |-  ( dom  f  =  dom  g  ->  ( dom  f  i^i 
dom  g )  =  dom  g )
4140reseq2d 5396 . . . . . . . 8  |-  ( dom  f  =  dom  g  ->  ( g  |`  ( dom  f  i^i  dom  g
) )  =  ( g  |`  dom  g ) )
4229, 41syl 17 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( g  |`  ( dom  f  i^i  dom  g
) )  =  ( g  |`  dom  g ) )
4320, 21, 6bnj66 30930 . . . . . . . 8  |-  ( g  e.  C  ->  Rel  g )
44 resdm 5441 . . . . . . . 8  |-  ( Rel  g  ->  ( g  |` 
dom  g )  =  g )
4519, 43, 443syl 18 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( g  |`  dom  g
)  =  g )
4642, 45eqtrd 2656 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( g  |`  ( dom  f  i^i  dom  g
) )  =  g )
4724, 38, 463eqtr3d 2664 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  f  =  g )
48473expib 1268 . . . 4  |-  ( R 
FrSe  A  ->  ( ( ta  /\  [ g  /  f ] ta )  ->  f  =  g ) )
4948alrimivv 1856 . . 3  |-  ( R 
FrSe  A  ->  A. f A. g ( ( ta 
/\  [ g  / 
f ] ta )  ->  f  =  g ) )
5049adantr 481 . 2  |-  ( ( R  FrSe  A  /\  E. f ta )  ->  A. f A. g ( ( ta  /\  [
g  /  f ] ta )  ->  f  =  g ) )
51 nfv 1843 . . 3  |-  F/ g ta
5251eu2 2509 . 2  |-  ( E! f ta  <->  ( E. f ta  /\  A. f A. g ( ( ta 
/\  [ g  / 
f ] ta )  ->  f  =  g ) ) )
531, 50, 52sylanbrc 698 1  |-  ( ( R  FrSe  A  /\  E. f ta )  ->  E! f ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704   [wsb 1880    e. wcel 1990   E!weu 2470   {cab 2608   A.wral 2912   E.wrex 2913    u. cun 3572    i^i cin 3573    C_ wss 3574   {csn 4177   <.cop 4183   dom cdm 5114    |` cres 5116   Rel wrel 5119    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1489  31124
  Copyright terms: Public domain W3C validator