| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exss | Structured version Visualization version Unicode version | ||
| Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.) |
| Ref | Expression |
|---|---|
| exss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2921 |
. . . 4
| |
| 2 | 1 | neeq1i 2858 |
. . 3
|
| 3 | rabn0 3958 |
. . 3
| |
| 4 | n0 3931 |
. . 3
| |
| 5 | 2, 3, 4 | 3bitr3i 290 |
. 2
|
| 6 | vex 3203 |
. . . . . 6
| |
| 7 | 6 | snss 4316 |
. . . . 5
|
| 8 | ssab2 3686 |
. . . . . 6
| |
| 9 | sstr2 3610 |
. . . . . 6
| |
| 10 | 8, 9 | mpi 20 |
. . . . 5
|
| 11 | 7, 10 | sylbi 207 |
. . . 4
|
| 12 | simpr 477 |
. . . . . . . 8
| |
| 13 | equsb1 2368 |
. . . . . . . . 9
| |
| 14 | velsn 4193 |
. . . . . . . . . 10
| |
| 15 | 14 | sbbii 1887 |
. . . . . . . . 9
|
| 16 | 13, 15 | mpbir 221 |
. . . . . . . 8
|
| 17 | 12, 16 | jctil 560 |
. . . . . . 7
|
| 18 | df-clab 2609 |
. . . . . . . 8
| |
| 19 | sban 2399 |
. . . . . . . 8
| |
| 20 | 18, 19 | bitri 264 |
. . . . . . 7
|
| 21 | df-rab 2921 |
. . . . . . . . 9
| |
| 22 | 21 | eleq2i 2693 |
. . . . . . . 8
|
| 23 | df-clab 2609 |
. . . . . . . . 9
| |
| 24 | sban 2399 |
. . . . . . . . 9
| |
| 25 | 23, 24 | bitri 264 |
. . . . . . . 8
|
| 26 | 22, 25 | bitri 264 |
. . . . . . 7
|
| 27 | 17, 20, 26 | 3imtr4i 281 |
. . . . . 6
|
| 28 | ne0i 3921 |
. . . . . 6
| |
| 29 | 27, 28 | syl 17 |
. . . . 5
|
| 30 | rabn0 3958 |
. . . . 5
| |
| 31 | 29, 30 | sylib 208 |
. . . 4
|
| 32 | snex 4908 |
. . . . 5
| |
| 33 | sseq1 3626 |
. . . . . 6
| |
| 34 | rexeq 3139 |
. . . . . 6
| |
| 35 | 33, 34 | anbi12d 747 |
. . . . 5
|
| 36 | 32, 35 | spcev 3300 |
. . . 4
|
| 37 | 11, 31, 36 | syl2anc 693 |
. . 3
|
| 38 | 37 | exlimiv 1858 |
. 2
|
| 39 | 5, 38 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |