MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ovscpbl Structured version   Visualization version   Unicode version

Theorem f1ovscpbl 16186
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
f1ocpbl.f  |-  ( ph  ->  F : V -1-1-onto-> X )
Assertion
Ref Expression
f1ovscpbl  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( F `  B )  =  ( F `  C )  ->  ( F `  ( A  .+  B ) )  =  ( F `
 ( A  .+  C ) ) ) )

Proof of Theorem f1ovscpbl
StepHypRef Expression
1 f1ocpbl.f . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> X )
2 f1of1 6136 . . . . 5  |-  ( F : V -1-1-onto-> X  ->  F : V -1-1-> X )
31, 2syl 17 . . . 4  |-  ( ph  ->  F : V -1-1-> X
)
43adantr 481 . . 3  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  ->  F : V -1-1-> X )
5 simpr2 1068 . . 3  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  ->  B  e.  V )
6 simpr3 1069 . . 3  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  ->  C  e.  V )
7 f1fveq 6519 . . 3  |-  ( ( F : V -1-1-> X  /\  ( B  e.  V  /\  C  e.  V
) )  ->  (
( F `  B
)  =  ( F `
 C )  <->  B  =  C ) )
84, 5, 6, 7syl12anc 1324 . 2  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( F `  B )  =  ( F `  C )  <-> 
B  =  C ) )
9 oveq2 6658 . . 3  |-  ( B  =  C  ->  ( A  .+  B )  =  ( A  .+  C
) )
109fveq2d 6195 . 2  |-  ( B  =  C  ->  ( F `  ( A  .+  B ) )  =  ( F `  ( A  .+  C ) ) )
118, 10syl6bi 243 1  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( F `  B )  =  ( F `  C )  ->  ( F `  ( A  .+  B ) )  =  ( F `
 ( A  .+  C ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-f1o 5895  df-fv 5896  df-ov 6653
This theorem is referenced by:  xpsvsca  16239
  Copyright terms: Public domain W3C validator