MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinbas Structured version   Visualization version   Unicode version

Theorem fiinbas 20756
Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fiinbas  |-  ( ( B  e.  C  /\  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  e.  B )  ->  B  e. 
TopBases )
Distinct variable groups:    x, B, y    x, C, y

Proof of Theorem fiinbas
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . . . . . . . 8  |-  ( x  i^i  y )  C_  ( x  i^i  y
)
2 eleq2 2690 . . . . . . . . . 10  |-  ( w  =  ( x  i^i  y )  ->  (
z  e.  w  <->  z  e.  ( x  i^i  y
) ) )
3 sseq1 3626 . . . . . . . . . 10  |-  ( w  =  ( x  i^i  y )  ->  (
w  C_  ( x  i^i  y )  <->  ( x  i^i  y )  C_  (
x  i^i  y )
) )
42, 3anbi12d 747 . . . . . . . . 9  |-  ( w  =  ( x  i^i  y )  ->  (
( z  e.  w  /\  w  C_  ( x  i^i  y ) )  <-> 
( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) ) )
54rspcev 3309 . . . . . . . 8  |-  ( ( ( x  i^i  y
)  e.  B  /\  ( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
61, 5mpanr2 720 . . . . . . 7  |-  ( ( ( x  i^i  y
)  e.  B  /\  z  e.  ( x  i^i  y ) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
76ralrimiva 2966 . . . . . 6  |-  ( ( x  i^i  y )  e.  B  ->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
87a1i 11 . . . . 5  |-  ( B  e.  C  ->  (
( x  i^i  y
)  e.  B  ->  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
98ralimdv 2963 . . . 4  |-  ( B  e.  C  ->  ( A. y  e.  B  ( x  i^i  y
)  e.  B  ->  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
109ralimdv 2963 . . 3  |-  ( B  e.  C  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  e.  B  ->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
11 isbasis2g 20752 . . 3  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
1210, 11sylibrd 249 . 2  |-  ( B  e.  C  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  e.  B  ->  B  e.  TopBases ) )
1312imp 445 1  |-  ( ( B  e.  C  /\  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  e.  B )  ->  B  e. 
TopBases )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-bases 20750
This theorem is referenced by:  fibas  20781  qtopbaslem  22562  ontopbas  32427  isbasisrelowl  33206
  Copyright terms: Public domain W3C validator