MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basis2 Structured version   Visualization version   Unicode version

Theorem basis2 20755
Description: Property of a basis. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
basis2  |-  ( ( ( B  e.  TopBases  /\  C  e.  B )  /\  ( D  e.  B  /\  A  e.  ( C  i^i  D ) ) )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D

Proof of Theorem basis2
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasis2g 20752 . . . . 5  |-  ( B  e.  TopBases  ->  ( B  e.  TopBases  <->  A. y  e.  B  A. z  e.  B  A. w  e.  ( y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z
) ) ) )
21ibi 256 . . . 4  |-  ( B  e.  TopBases  ->  A. y  e.  B  A. z  e.  B  A. w  e.  (
y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z ) ) )
3 ineq1 3807 . . . . . . 7  |-  ( y  =  C  ->  (
y  i^i  z )  =  ( C  i^i  z ) )
4 sseq2 3627 . . . . . . . . . 10  |-  ( ( y  i^i  z )  =  ( C  i^i  z )  ->  (
x  C_  ( y  i^i  z )  <->  x  C_  ( C  i^i  z ) ) )
54anbi2d 740 . . . . . . . . 9  |-  ( ( y  i^i  z )  =  ( C  i^i  z )  ->  (
( w  e.  x  /\  x  C_  ( y  i^i  z ) )  <-> 
( w  e.  x  /\  x  C_  ( C  i^i  z ) ) ) )
65rexbidv 3052 . . . . . . . 8  |-  ( ( y  i^i  z )  =  ( C  i^i  z )  ->  ( E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z ) )  <->  E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z ) ) ) )
76raleqbi1dv 3146 . . . . . . 7  |-  ( ( y  i^i  z )  =  ( C  i^i  z )  ->  ( A. w  e.  (
y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z ) )  <->  A. w  e.  ( C  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z ) ) ) )
83, 7syl 17 . . . . . 6  |-  ( y  =  C  ->  ( A. w  e.  (
y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z ) )  <->  A. w  e.  ( C  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z ) ) ) )
9 ineq2 3808 . . . . . . 7  |-  ( z  =  D  ->  ( C  i^i  z )  =  ( C  i^i  D
) )
10 sseq2 3627 . . . . . . . . . 10  |-  ( ( C  i^i  z )  =  ( C  i^i  D )  ->  ( x  C_  ( C  i^i  z
)  <->  x  C_  ( C  i^i  D ) ) )
1110anbi2d 740 . . . . . . . . 9  |-  ( ( C  i^i  z )  =  ( C  i^i  D )  ->  ( (
w  e.  x  /\  x  C_  ( C  i^i  z ) )  <->  ( w  e.  x  /\  x  C_  ( C  i^i  D
) ) ) )
1211rexbidv 3052 . . . . . . . 8  |-  ( ( C  i^i  z )  =  ( C  i^i  D )  ->  ( E. x  e.  B  (
w  e.  x  /\  x  C_  ( C  i^i  z ) )  <->  E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D
) ) ) )
1312raleqbi1dv 3146 . . . . . . 7  |-  ( ( C  i^i  z )  =  ( C  i^i  D )  ->  ( A. w  e.  ( C  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z
) )  <->  A. w  e.  ( C  i^i  D
) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
149, 13syl 17 . . . . . 6  |-  ( z  =  D  ->  ( A. w  e.  ( C  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z ) )  <->  A. w  e.  ( C  i^i  D
) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
158, 14rspc2v 3322 . . . . 5  |-  ( ( C  e.  B  /\  D  e.  B )  ->  ( A. y  e.  B  A. z  e.  B  A. w  e.  ( y  i^i  z
) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z
) )  ->  A. w  e.  ( C  i^i  D
) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
16 eleq1 2689 . . . . . . . 8  |-  ( w  =  A  ->  (
w  e.  x  <->  A  e.  x ) )
1716anbi1d 741 . . . . . . 7  |-  ( w  =  A  ->  (
( w  e.  x  /\  x  C_  ( C  i^i  D ) )  <-> 
( A  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
1817rexbidv 3052 . . . . . 6  |-  ( w  =  A  ->  ( E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D ) )  <->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
1918rspccv 3306 . . . . 5  |-  ( A. w  e.  ( C  i^i  D ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D
) )  ->  ( A  e.  ( C  i^i  D )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) ) )
2015, 19syl6com 37 . . . 4  |-  ( A. y  e.  B  A. z  e.  B  A. w  e.  ( y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z
) )  ->  (
( C  e.  B  /\  D  e.  B
)  ->  ( A  e.  ( C  i^i  D
)  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) ) ) )
212, 20syl 17 . . 3  |-  ( B  e.  TopBases  ->  ( ( C  e.  B  /\  D  e.  B )  ->  ( A  e.  ( C  i^i  D )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) ) ) )
2221expd 452 . 2  |-  ( B  e.  TopBases  ->  ( C  e.  B  ->  ( D  e.  B  ->  ( A  e.  ( C  i^i  D )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) ) ) ) )
2322imp43 621 1  |-  ( ( ( B  e.  TopBases  /\  C  e.  B )  /\  ( D  e.  B  /\  A  e.  ( C  i^i  D ) ) )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-bases 20750
This theorem is referenced by:  tgcl  20773  restbas  20962  txbas  21370  basqtop  21514  tgioo  22599
  Copyright terms: Public domain W3C validator