| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isbasis2g | Structured version Visualization version Unicode version | ||
| Description: Express the predicate
" |
| Ref | Expression |
|---|---|
| isbasis2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasisg 20751 |
. 2
| |
| 2 | dfss3 3592 |
. . . 4
| |
| 3 | elin 3796 |
. . . . . . . . . 10
| |
| 4 | selpw 4165 |
. . . . . . . . . . 11
| |
| 5 | 4 | anbi2i 730 |
. . . . . . . . . 10
|
| 6 | 3, 5 | bitri 264 |
. . . . . . . . 9
|
| 7 | 6 | anbi2i 730 |
. . . . . . . 8
|
| 8 | an12 838 |
. . . . . . . 8
| |
| 9 | 7, 8 | bitri 264 |
. . . . . . 7
|
| 10 | 9 | exbii 1774 |
. . . . . 6
|
| 11 | eluni 4439 |
. . . . . 6
| |
| 12 | df-rex 2918 |
. . . . . 6
| |
| 13 | 10, 11, 12 | 3bitr4i 292 |
. . . . 5
|
| 14 | 13 | ralbii 2980 |
. . . 4
|
| 15 | 2, 14 | bitri 264 |
. . 3
|
| 16 | 15 | 2ralbii 2981 |
. 2
|
| 17 | 1, 16 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 df-bases 20750 |
| This theorem is referenced by: isbasis3g 20753 basis2 20755 fiinbas 20756 tgclb 20774 topbas 20776 restbas 20962 txbas 21370 blbas 22235 |
| Copyright terms: Public domain | W3C validator |