MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopbaslem Structured version   Visualization version   Unicode version

Theorem qtopbaslem 22562
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
qtopbas.1  |-  S  C_  RR*
Assertion
Ref Expression
qtopbaslem  |-  ( (,) " ( S  X.  S ) )  e.  TopBases

Proof of Theorem qtopbaslem
Dummy variables  u  t  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 12198 . . . 4  |-  (,)  e.  _V
21rnex 7100 . . 3  |-  ran  (,)  e.  _V
3 imassrn 5477 . . 3  |-  ( (,) " ( S  X.  S ) )  C_  ran  (,)
42, 3ssexi 4803 . 2  |-  ( (,) " ( S  X.  S ) )  e. 
_V
5 qtopbas.1 . . . . . . . . 9  |-  S  C_  RR*
65sseli 3599 . . . . . . . 8  |-  ( z  e.  S  ->  z  e.  RR* )
75sseli 3599 . . . . . . . 8  |-  ( w  e.  S  ->  w  e.  RR* )
86, 7anim12i 590 . . . . . . 7  |-  ( ( z  e.  S  /\  w  e.  S )  ->  ( z  e.  RR*  /\  w  e.  RR* )
)
95sseli 3599 . . . . . . . 8  |-  ( v  e.  S  ->  v  e.  RR* )
105sseli 3599 . . . . . . . 8  |-  ( u  e.  S  ->  u  e.  RR* )
119, 10anim12i 590 . . . . . . 7  |-  ( ( v  e.  S  /\  u  e.  S )  ->  ( v  e.  RR*  /\  u  e.  RR* )
)
12 iooin 12209 . . . . . . 7  |-  ( ( ( z  e.  RR*  /\  w  e.  RR* )  /\  ( v  e.  RR*  /\  u  e.  RR* )
)  ->  ( (
z (,) w )  i^i  ( v (,) u ) )  =  ( if ( z  <_  v ,  v ,  z ) (,)
if ( w  <_  u ,  w ,  u ) ) )
138, 11, 12syl2an 494 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  =  ( if ( z  <_  v ,  v ,  z ) (,) if ( w  <_  u ,  w ,  u )
) )
14 ifcl 4130 . . . . . . . . 9  |-  ( ( v  e.  S  /\  z  e.  S )  ->  if ( z  <_ 
v ,  v ,  z )  e.  S
)
1514ancoms 469 . . . . . . . 8  |-  ( ( z  e.  S  /\  v  e.  S )  ->  if ( z  <_ 
v ,  v ,  z )  e.  S
)
16 ifcl 4130 . . . . . . . 8  |-  ( ( w  e.  S  /\  u  e.  S )  ->  if ( w  <_  u ,  w ,  u )  e.  S
)
17 df-ov 6653 . . . . . . . . 9  |-  ( if ( z  <_  v ,  v ,  z ) (,) if ( w  <_  u ,  w ,  u )
)  =  ( (,) `  <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >. )
18 opelxpi 5148 . . . . . . . . . 10  |-  ( ( if ( z  <_ 
v ,  v ,  z )  e.  S  /\  if ( w  <_  u ,  w ,  u )  e.  S
)  ->  <. if ( z  <_  v , 
v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >.  e.  ( S  X.  S ) )
19 ioof 12271 . . . . . . . . . . . 12  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
20 ffun 6048 . . . . . . . . . . . 12  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
2119, 20ax-mp 5 . . . . . . . . . . 11  |-  Fun  (,)
22 xpss12 5225 . . . . . . . . . . . . 13  |-  ( ( S  C_  RR*  /\  S  C_ 
RR* )  ->  ( S  X.  S )  C_  ( RR*  X.  RR* )
)
235, 5, 22mp2an 708 . . . . . . . . . . . 12  |-  ( S  X.  S )  C_  ( RR*  X.  RR* )
2419fdmi 6052 . . . . . . . . . . . 12  |-  dom  (,)  =  ( RR*  X.  RR* )
2523, 24sseqtr4i 3638 . . . . . . . . . . 11  |-  ( S  X.  S )  C_  dom  (,)
26 funfvima2 6493 . . . . . . . . . . 11  |-  ( ( Fun  (,)  /\  ( S  X.  S )  C_  dom  (,) )  ->  ( <. if ( z  <_ 
v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u )
>.  e.  ( S  X.  S )  ->  ( (,) `  <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >. )  e.  ( (,) " ( S  X.  S ) ) ) )
2721, 25, 26mp2an 708 . . . . . . . . . 10  |-  ( <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >.  e.  ( S  X.  S )  ->  ( (,) `  <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >. )  e.  ( (,) " ( S  X.  S ) ) )
2818, 27syl 17 . . . . . . . . 9  |-  ( ( if ( z  <_ 
v ,  v ,  z )  e.  S  /\  if ( w  <_  u ,  w ,  u )  e.  S
)  ->  ( (,) ` 
<. if ( z  <_ 
v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u )
>. )  e.  ( (,) " ( S  X.  S ) ) )
2917, 28syl5eqel 2705 . . . . . . . 8  |-  ( ( if ( z  <_ 
v ,  v ,  z )  e.  S  /\  if ( w  <_  u ,  w ,  u )  e.  S
)  ->  ( if ( z  <_  v ,  v ,  z ) (,) if ( w  <_  u ,  w ,  u )
)  e.  ( (,) " ( S  X.  S ) ) )
3015, 16, 29syl2an 494 . . . . . . 7  |-  ( ( ( z  e.  S  /\  v  e.  S
)  /\  ( w  e.  S  /\  u  e.  S ) )  -> 
( if ( z  <_  v ,  v ,  z ) (,)
if ( w  <_  u ,  w ,  u ) )  e.  ( (,) " ( S  X.  S ) ) )
3130an4s 869 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( if ( z  <_  v ,  v ,  z ) (,)
if ( w  <_  u ,  w ,  u ) )  e.  ( (,) " ( S  X.  S ) ) )
3213, 31eqeltrd 2701 . . . . 5  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
3332ralrimivva 2971 . . . 4  |-  ( ( z  e.  S  /\  w  e.  S )  ->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
3433rgen2a 2977 . . 3  |-  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) )
35 ffn 6045 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
3619, 35ax-mp 5 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
37 ineq1 3807 . . . . . . . 8  |-  ( x  =  ( (,) `  t
)  ->  ( x  i^i  y )  =  ( ( (,) `  t
)  i^i  y )
)
3837eleq1d 2686 . . . . . . 7  |-  ( x  =  ( (,) `  t
)  ->  ( (
x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
3938ralbidv 2986 . . . . . 6  |-  ( x  =  ( (,) `  t
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
4039ralima 6498 . . . . 5  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
4136, 23, 40mp2an 708 . . . 4  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) )
42 fveq2 6191 . . . . . . . . . 10  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( (,) `  <. z ,  w >. ) )
43 df-ov 6653 . . . . . . . . . 10  |-  ( z (,) w )  =  ( (,) `  <. z ,  w >. )
4442, 43syl6eqr 2674 . . . . . . . . 9  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( z (,) w ) )
4544ineq1d 3813 . . . . . . . 8  |-  ( t  =  <. z ,  w >.  ->  ( ( (,) `  t )  i^i  y
)  =  ( ( z (,) w )  i^i  y ) )
4645eleq1d 2686 . . . . . . 7  |-  ( t  =  <. z ,  w >.  ->  ( ( ( (,) `  t )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) ) )
4746ralbidv 2986 . . . . . 6  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
48 ineq2 3808 . . . . . . . . . 10  |-  ( y  =  ( (,) `  t
)  ->  ( (
z (,) w )  i^i  y )  =  ( ( z (,) w )  i^i  ( (,) `  t ) ) )
4948eleq1d 2686 . . . . . . . . 9  |-  ( y  =  ( (,) `  t
)  ->  ( (
( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
5049ralima 6498 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
5136, 23, 50mp2an 708 . . . . . . 7  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) )
52 fveq2 6191 . . . . . . . . . . 11  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( (,) `  <. v ,  u >. ) )
53 df-ov 6653 . . . . . . . . . . 11  |-  ( v (,) u )  =  ( (,) `  <. v ,  u >. )
5452, 53syl6eqr 2674 . . . . . . . . . 10  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( v (,) u ) )
5554ineq2d 3814 . . . . . . . . 9  |-  ( t  =  <. v ,  u >.  ->  ( ( z (,) w )  i^i  ( (,) `  t
) )  =  ( ( z (,) w
)  i^i  ( v (,) u ) ) )
5655eleq1d 2686 . . . . . . . 8  |-  ( t  =  <. v ,  u >.  ->  ( ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
5756ralxp 5263 . . . . . . 7  |-  ( A. t  e.  ( S  X.  S ) ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
5851, 57bitri 264 . . . . . 6  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
5947, 58syl6bb 276 . . . . 5  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
6059ralxp 5263 . . . 4  |-  ( A. t  e.  ( S  X.  S ) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
6141, 60bitri 264 . . 3  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
6234, 61mpbir 221 . 2  |-  A. x  e.  ( (,) " ( S  X.  S ) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )
63 fiinbas 20756 . 2  |-  ( ( ( (,) " ( S  X.  S ) )  e.  _V  /\  A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) )  ->  ( (,) " ( S  X.  S ) )  e.  TopBases )
644, 62, 63mp2an 708 1  |-  ( (,) " ( S  X.  S ) )  e.  TopBases
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   RR*cxr 10073    <_ cle 10075   (,)cioo 12175   TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-bases 20750
This theorem is referenced by:  qtopbas  22563  retopbas  22564
  Copyright terms: Public domain W3C validator