MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvinrn Structured version   Visualization version   Unicode version

Theorem fimacnvinrn 6348
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
fimacnvinrn  |-  ( Fun 
F  ->  ( `' F " A )  =  ( `' F "
( A  i^i  ran  F ) ) )

Proof of Theorem fimacnvinrn
StepHypRef Expression
1 inpreima 6342 . 2  |-  ( Fun 
F  ->  ( `' F " ( A  i^i  ran 
F ) )  =  ( ( `' F " A )  i^i  ( `' F " ran  F
) ) )
2 funforn 6122 . . . . 5  |-  ( Fun 
F  <->  F : dom  F -onto-> ran  F )
3 fof 6115 . . . . 5  |-  ( F : dom  F -onto-> ran  F  ->  F : dom  F --> ran  F )
42, 3sylbi 207 . . . 4  |-  ( Fun 
F  ->  F : dom  F --> ran  F )
5 fimacnv 6347 . . . 4  |-  ( F : dom  F --> ran  F  ->  ( `' F " ran  F )  =  dom  F )
64, 5syl 17 . . 3  |-  ( Fun 
F  ->  ( `' F " ran  F )  =  dom  F )
76ineq2d 3814 . 2  |-  ( Fun 
F  ->  ( ( `' F " A )  i^i  ( `' F " ran  F ) )  =  ( ( `' F " A )  i^i  dom  F )
)
8 cnvresima 5623 . . 3  |-  ( `' ( F  |`  dom  F
) " A )  =  ( ( `' F " A )  i^i  dom  F )
9 resdm2 5624 . . . . . 6  |-  ( F  |`  dom  F )  =  `' `' F
10 funrel 5905 . . . . . . 7  |-  ( Fun 
F  ->  Rel  F )
11 dfrel2 5583 . . . . . . 7  |-  ( Rel 
F  <->  `' `' F  =  F
)
1210, 11sylib 208 . . . . . 6  |-  ( Fun 
F  ->  `' `' F  =  F )
139, 12syl5eq 2668 . . . . 5  |-  ( Fun 
F  ->  ( F  |` 
dom  F )  =  F )
1413cnveqd 5298 . . . 4  |-  ( Fun 
F  ->  `' ( F  |`  dom  F )  =  `' F )
1514imaeq1d 5465 . . 3  |-  ( Fun 
F  ->  ( `' ( F  |`  dom  F
) " A )  =  ( `' F " A ) )
168, 15syl5eqr 2670 . 2  |-  ( Fun 
F  ->  ( ( `' F " A )  i^i  dom  F )  =  ( `' F " A ) )
171, 7, 163eqtrrd 2661 1  |-  ( Fun 
F  ->  ( `' F " A )  =  ( `' F "
( A  i^i  ran  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    i^i cin 3573   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Rel wrel 5119   Fun wfun 5882   -->wf 5884   -onto->wfo 5886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by:  fimacnvinrn2  6349
  Copyright terms: Public domain W3C validator