MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvinrn2 Structured version   Visualization version   Unicode version

Theorem fimacnvinrn2 6349
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.)
Assertion
Ref Expression
fimacnvinrn2  |-  ( ( Fun  F  /\  ran  F 
C_  B )  -> 
( `' F " A )  =  ( `' F " ( A  i^i  B ) ) )

Proof of Theorem fimacnvinrn2
StepHypRef Expression
1 inass 3823 . . . 4  |-  ( ( A  i^i  B )  i^i  ran  F )  =  ( A  i^i  ( B  i^i  ran  F
) )
2 sseqin2 3817 . . . . . . 7  |-  ( ran 
F  C_  B  <->  ( B  i^i  ran  F )  =  ran  F )
32biimpi 206 . . . . . 6  |-  ( ran 
F  C_  B  ->  ( B  i^i  ran  F
)  =  ran  F
)
43adantl 482 . . . . 5  |-  ( ( Fun  F  /\  ran  F 
C_  B )  -> 
( B  i^i  ran  F )  =  ran  F
)
54ineq2d 3814 . . . 4  |-  ( ( Fun  F  /\  ran  F 
C_  B )  -> 
( A  i^i  ( B  i^i  ran  F )
)  =  ( A  i^i  ran  F )
)
61, 5syl5eq 2668 . . 3  |-  ( ( Fun  F  /\  ran  F 
C_  B )  -> 
( ( A  i^i  B )  i^i  ran  F
)  =  ( A  i^i  ran  F )
)
76imaeq2d 5466 . 2  |-  ( ( Fun  F  /\  ran  F 
C_  B )  -> 
( `' F "
( ( A  i^i  B )  i^i  ran  F
) )  =  ( `' F " ( A  i^i  ran  F )
) )
8 fimacnvinrn 6348 . . 3  |-  ( Fun 
F  ->  ( `' F " ( A  i^i  B ) )  =  ( `' F " ( ( A  i^i  B )  i^i  ran  F )
) )
98adantr 481 . 2  |-  ( ( Fun  F  /\  ran  F 
C_  B )  -> 
( `' F "
( A  i^i  B
) )  =  ( `' F " ( ( A  i^i  B )  i^i  ran  F )
) )
10 fimacnvinrn 6348 . . 3  |-  ( Fun 
F  ->  ( `' F " A )  =  ( `' F "
( A  i^i  ran  F ) ) )
1110adantr 481 . 2  |-  ( ( Fun  F  /\  ran  F 
C_  B )  -> 
( `' F " A )  =  ( `' F " ( A  i^i  ran  F )
) )
127, 9, 113eqtr4rd 2667 1  |-  ( ( Fun  F  /\  ran  F 
C_  B )  -> 
( `' F " A )  =  ( `' F " ( A  i^i  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    i^i cin 3573    C_ wss 3574   `'ccnv 5113   ran crn 5115   "cima 5117   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by:  eulerpartgbij  30434  orvcval4  30522  preimaioomnf  40929
  Copyright terms: Public domain W3C validator