Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpnom Structured version   Visualization version   Unicode version

Theorem finxpnom 33238
Description: Cartesian exponentiation when the exponent is not a natural number defaults to the empty set. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxpnom  |-  ( -.  N  e.  om  ->  ( U ^^ ^^ N
)  =  (/) )

Proof of Theorem finxpnom
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . 5  |-  ( ( N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) )  ->  N  e.  om )
21con3i 150 . . . 4  |-  ( -.  N  e.  om  ->  -.  ( N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) )
3 abid 2610 . . . 4  |-  ( y  e.  { y  |  ( N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }  <->  ( N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) )
42, 3sylnibr 319 . . 3  |-  ( -.  N  e.  om  ->  -.  y  e.  { y  |  ( N  e. 
om  /\  (/)  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) } )
5 df-finxp 33221 . . . 4  |-  ( U ^^ ^^ N )  =  { y  |  ( N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }
65eleq2i 2693 . . 3  |-  ( y  e.  ( U ^^ ^^ N )  <->  y  e.  { y  |  ( N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) } )
74, 6sylnibr 319 . 2  |-  ( -.  N  e.  om  ->  -.  y  e.  ( U ^^ ^^ N ) )
87eq0rdv 3979 1  |-  ( -.  N  e.  om  ->  ( U ^^ ^^ N
)  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436    X. cxp 5112   ` cfv 5888    |-> cmpt2 6652   omcom 7065   1stc1st 7166   reccrdg 7505   1oc1o 7553   ^^
^^cfinxp 33220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-finxp 33221
This theorem is referenced by:  finxp00  33239
  Copyright terms: Public domain W3C validator