Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp00 Structured version   Visualization version   Unicode version

Theorem finxp00 33239
Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp00  |-  ( (/) ^^
^^ N )  =  (/)

Proof of Theorem finxp00
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 finxpeq2 33224 . . . 4  |-  ( n  =  (/)  ->  ( (/) ^^
^^ n )  =  ( (/) ^^ ^^ (/) ) )
21eqeq1d 2624 . . 3  |-  ( n  =  (/)  ->  ( (
(/) ^^ ^^ n )  =  (/)  <->  ( (/) ^^ ^^ (/) )  =  (/) ) )
3 finxpeq2 33224 . . . 4  |-  ( n  =  m  ->  ( (/)
^^ ^^ n )  =  ( (/) ^^ ^^ m
) )
43eqeq1d 2624 . . 3  |-  ( n  =  m  ->  (
( (/) ^^ ^^ n
)  =  (/)  <->  ( (/) ^^ ^^ m )  =  (/) ) )
5 finxpeq2 33224 . . . 4  |-  ( n  =  suc  m  -> 
( (/) ^^ ^^ n
)  =  ( (/) ^^
^^ suc  m )
)
65eqeq1d 2624 . . 3  |-  ( n  =  suc  m  -> 
( ( (/) ^^ ^^ n )  =  (/)  <->  ( (/)
^^ ^^ suc  m )  =  (/) ) )
7 finxpeq2 33224 . . . 4  |-  ( n  =  N  ->  ( (/)
^^ ^^ n )  =  ( (/) ^^ ^^ N
) )
87eqeq1d 2624 . . 3  |-  ( n  =  N  ->  (
( (/) ^^ ^^ n
)  =  (/)  <->  ( (/) ^^ ^^ N )  =  (/) ) )
9 finxp0 33228 . . 3  |-  ( (/) ^^
^^ (/) )  =  (/)
10 suceq 5790 . . . . . . . . 9  |-  ( m  =  (/)  ->  suc  m  =  suc  (/) )
11 df-1o 7560 . . . . . . . . 9  |-  1o  =  suc  (/)
1210, 11syl6eqr 2674 . . . . . . . 8  |-  ( m  =  (/)  ->  suc  m  =  1o )
13 finxpeq2 33224 . . . . . . . 8  |-  ( suc  m  =  1o  ->  (
(/) ^^ ^^ suc  m
)  =  ( (/) ^^
^^ 1o ) )
1412, 13syl 17 . . . . . . 7  |-  ( m  =  (/)  ->  ( (/) ^^
^^ suc  m )  =  ( (/) ^^ ^^ 1o ) )
15 finxp1o 33229 . . . . . . 7  |-  ( (/) ^^
^^ 1o )  =  (/)
1614, 15syl6eq 2672 . . . . . 6  |-  ( m  =  (/)  ->  ( (/) ^^
^^ suc  m )  =  (/) )
1716adantl 482 . . . . 5  |-  ( ( m  e.  om  /\  m  =  (/) )  -> 
( (/) ^^ ^^ suc  m )  =  (/) )
18 finxpsuc 33235 . . . . . 6  |-  ( ( m  e.  om  /\  m  =/=  (/) )  ->  ( (/)
^^ ^^ suc  m )  =  ( ( (/) ^^
^^ m )  X.  (/) ) )
19 xp0 5552 . . . . . 6  |-  ( (
(/) ^^ ^^ m )  X.  (/) )  =  (/)
2018, 19syl6eq 2672 . . . . 5  |-  ( ( m  e.  om  /\  m  =/=  (/) )  ->  ( (/)
^^ ^^ suc  m )  =  (/) )
2117, 20pm2.61dane 2881 . . . 4  |-  ( m  e.  om  ->  ( (/)
^^ ^^ suc  m )  =  (/) )
2221a1d 25 . . 3  |-  ( m  e.  om  ->  (
( (/) ^^ ^^ m
)  =  (/)  ->  ( (/)
^^ ^^ suc  m )  =  (/) ) )
232, 4, 6, 8, 9, 22finds 7092 . 2  |-  ( N  e.  om  ->  ( (/)
^^ ^^ N )  =  (/) )
24 finxpnom 33238 . 2  |-  ( -.  N  e.  om  ->  (
(/) ^^ ^^ N )  =  (/) )
2523, 24pm2.61i 176 1  |-  ( (/) ^^
^^ N )  =  (/)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915    X. cxp 5112   suc csuc 5725   omcom 7065   1oc1o 7553   ^^ ^^cfinxp 33220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-finxp 33221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator