MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndifnfp Structured version   Visualization version   Unicode version

Theorem fndifnfp 6442
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fndifnfp  |-  ( F  Fn  A  ->  dom  ( F  \  _I  )  =  { x  e.  A  |  ( F `  x )  =/=  x } )
Distinct variable groups:    x, F    x, A

Proof of Theorem fndifnfp
StepHypRef Expression
1 dffn2 6047 . . . . . . . 8  |-  ( F  Fn  A  <->  F : A
--> _V )
2 fssxp 6060 . . . . . . . 8  |-  ( F : A --> _V  ->  F 
C_  ( A  X.  _V ) )
31, 2sylbi 207 . . . . . . 7  |-  ( F  Fn  A  ->  F  C_  ( A  X.  _V ) )
4 ssdif0 3942 . . . . . . 7  |-  ( F 
C_  ( A  X.  _V )  <->  ( F  \ 
( A  X.  _V ) )  =  (/) )
53, 4sylib 208 . . . . . 6  |-  ( F  Fn  A  ->  ( F  \  ( A  X.  _V ) )  =  (/) )
65uneq2d 3767 . . . . 5  |-  ( F  Fn  A  ->  (
( F  \  _I  )  u.  ( F  \  ( A  X.  _V ) ) )  =  ( ( F  \  _I  )  u.  (/) ) )
7 un0 3967 . . . . 5  |-  ( ( F  \  _I  )  u.  (/) )  =  ( F  \  _I  )
86, 7syl6req 2673 . . . 4  |-  ( F  Fn  A  ->  ( F  \  _I  )  =  ( ( F  \  _I  )  u.  ( F  \  ( A  X.  _V ) ) ) )
9 df-res 5126 . . . . . 6  |-  (  _I  |`  A )  =  (  _I  i^i  ( A  X.  _V ) )
109difeq2i 3725 . . . . 5  |-  ( F 
\  (  _I  |`  A ) )  =  ( F 
\  (  _I  i^i  ( A  X.  _V )
) )
11 difindi 3881 . . . . 5  |-  ( F 
\  (  _I  i^i  ( A  X.  _V )
) )  =  ( ( F  \  _I  )  u.  ( F  \  ( A  X.  _V ) ) )
1210, 11eqtri 2644 . . . 4  |-  ( F 
\  (  _I  |`  A ) )  =  ( ( F  \  _I  )  u.  ( F  \  ( A  X.  _V ) ) )
138, 12syl6eqr 2674 . . 3  |-  ( F  Fn  A  ->  ( F  \  _I  )  =  ( F  \  (  _I  |`  A ) ) )
1413dmeqd 5326 . 2  |-  ( F  Fn  A  ->  dom  ( F  \  _I  )  =  dom  ( F  \ 
(  _I  |`  A ) ) )
15 fnresi 6008 . . 3  |-  (  _I  |`  A )  Fn  A
16 fndmdif 6321 . . 3  |-  ( ( F  Fn  A  /\  (  _I  |`  A )  Fn  A )  ->  dom  ( F  \  (  _I  |`  A ) )  =  { x  e.  A  |  ( F `
 x )  =/=  ( (  _I  |`  A ) `
 x ) } )
1715, 16mpan2 707 . 2  |-  ( F  Fn  A  ->  dom  ( F  \  (  _I  |`  A ) )  =  { x  e.  A  |  ( F `
 x )  =/=  ( (  _I  |`  A ) `
 x ) } )
18 fvresi 6439 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
1918neeq2d 2854 . . . 4  |-  ( x  e.  A  ->  (
( F `  x
)  =/=  ( (  _I  |`  A ) `  x )  <->  ( F `  x )  =/=  x
) )
2019rabbiia 3185 . . 3  |-  { x  e.  A  |  ( F `  x )  =/=  ( (  _I  |`  A ) `
 x ) }  =  { x  e.  A  |  ( F `
 x )  =/=  x }
2120a1i 11 . 2  |-  ( F  Fn  A  ->  { x  e.  A  |  ( F `  x )  =/=  ( (  _I  |`  A ) `
 x ) }  =  { x  e.  A  |  ( F `
 x )  =/=  x } )
2214, 17, 213eqtrd 2660 1  |-  ( F  Fn  A  ->  dom  ( F  \  _I  )  =  { x  e.  A  |  ( F `  x )  =/=  x } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915    _I cid 5023    X. cxp 5112   dom cdm 5114    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  fnelnfp  6443  fnnfpeq0  6444  f1omvdcnv  17864  pmtrmvd  17876  pmtrdifellem4  17899  sygbasnfpfi  17932
  Copyright terms: Public domain W3C validator