MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrmvd Structured version   Visualization version   Unicode version

Theorem pmtrmvd 17876
Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t  |-  T  =  (pmTrsp `  D )
Assertion
Ref Expression
pmtrmvd  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  dom  ( ( T `  P )  \  _I  )  =  P )

Proof of Theorem pmtrmvd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . 4  |-  T  =  (pmTrsp `  D )
21pmtrf 17875 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P ) : D --> D )
3 ffn 6045 . . 3  |-  ( ( T `  P ) : D --> D  -> 
( T `  P
)  Fn  D )
4 fndifnfp 6442 . . 3  |-  ( ( T `  P )  Fn  D  ->  dom  ( ( T `  P )  \  _I  )  =  { z  e.  D  |  (
( T `  P
) `  z )  =/=  z } )
52, 3, 43syl 18 . 2  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  dom  ( ( T `  P )  \  _I  )  =  { z  e.  D  |  (
( T `  P
) `  z )  =/=  z } )
61pmtrfv 17872 . . . . . 6  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  D )  ->  ( ( T `  P ) `  z
)  =  if ( z  e.  P ,  U. ( P  \  {
z } ) ,  z ) )
76neeq1d 2853 . . . . 5  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  D )  ->  ( ( ( T `
 P ) `  z )  =/=  z  <->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z )  =/=  z ) )
8 iffalse 4095 . . . . . . . 8  |-  ( -.  z  e.  P  ->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z )  =  z )
98necon1ai 2821 . . . . . . 7  |-  ( if ( z  e.  P ,  U. ( P  \  { z } ) ,  z )  =/=  z  ->  z  e.  P )
10 iftrue 4092 . . . . . . . . . 10  |-  ( z  e.  P  ->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z )  = 
U. ( P  \  { z } ) )
1110adantl 482 . . . . . . . . 9  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  P )  ->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z )  =  U. ( P 
\  { z } ) )
12 1onn 7719 . . . . . . . . . . . 12  |-  1o  e.  om
1312a1i 11 . . . . . . . . . . 11  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  P )  ->  1o  e.  om )
14 simpl3 1066 . . . . . . . . . . . 12  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  P )  ->  P  ~~  2o )
15 df-2o 7561 . . . . . . . . . . . 12  |-  2o  =  suc  1o
1614, 15syl6breq 4694 . . . . . . . . . . 11  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  P )  ->  P  ~~  suc  1o )
17 simpr 477 . . . . . . . . . . 11  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  P )  ->  z  e.  P )
18 dif1en 8193 . . . . . . . . . . 11  |-  ( ( 1o  e.  om  /\  P  ~~  suc  1o  /\  z  e.  P )  ->  ( P  \  {
z } )  ~~  1o )
1913, 16, 17, 18syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  P )  ->  ( P  \  {
z } )  ~~  1o )
20 en1uniel 8028 . . . . . . . . . 10  |-  ( ( P  \  { z } )  ~~  1o  ->  U. ( P  \  { z } )  e.  ( P  \  { z } ) )
21 eldifsni 4320 . . . . . . . . . 10  |-  ( U. ( P  \  { z } )  e.  ( P  \  { z } )  ->  U. ( P  \  { z } )  =/=  z )
2219, 20, 213syl 18 . . . . . . . . 9  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  P )  ->  U. ( P  \  { z } )  =/=  z )
2311, 22eqnetrd 2861 . . . . . . . 8  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  P )  ->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z )  =/=  z )
2423ex 450 . . . . . . 7  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  (
z  e.  P  ->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z )  =/=  z ) )
259, 24impbid2 216 . . . . . 6  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( if ( z  e.  P ,  U. ( P  \  { z } ) ,  z )  =/=  z  <->  z  e.  P
) )
2625adantr 481 . . . . 5  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  D )  ->  ( if ( z  e.  P ,  U. ( P  \  { z } ) ,  z )  =/=  z  <->  z  e.  P ) )
277, 26bitrd 268 . . . 4  |-  ( ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  /\  z  e.  D )  ->  ( ( ( T `
 P ) `  z )  =/=  z  <->  z  e.  P ) )
2827rabbidva 3188 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  { z  e.  D  |  ( ( T `  P
) `  z )  =/=  z }  =  {
z  e.  D  | 
z  e.  P }
)
29 incom 3805 . . . 4  |-  ( P  i^i  D )  =  ( D  i^i  P
)
30 dfin5 3582 . . . 4  |-  ( D  i^i  P )  =  { z  e.  D  |  z  e.  P }
3129, 30eqtri 2644 . . 3  |-  ( P  i^i  D )  =  { z  e.  D  |  z  e.  P }
3228, 31syl6eqr 2674 . 2  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  { z  e.  D  |  ( ( T `  P
) `  z )  =/=  z }  =  ( P  i^i  D ) )
33 simp2 1062 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  C_  D )
34 df-ss 3588 . . 3  |-  ( P 
C_  D  <->  ( P  i^i  D )  =  P )
3533, 34sylib 208 . 2  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( P  i^i  D )  =  P )
365, 32, 353eqtrd 2660 1  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  dom  ( ( T `  P )  \  _I  )  =  P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   {csn 4177   U.cuni 4436   class class class wbr 4653    _I cid 5023   dom cdm 5114   suc csuc 5725    Fn wfn 5883   -->wf 5884   ` cfv 5888   omcom 7065   1oc1o 7553   2oc2o 7554    ~~ cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  pmtrfrn  17878  pmtrfb  17885  symggen  17890  pmtrdifellem2  17897  mdetralt  20414  mdetunilem7  20424
  Copyright terms: Public domain W3C validator