Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfv Structured version   Visualization version   Unicode version

Theorem fnlimfv 39895
Description: The value of the limit function  G at any point of its domain  D. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfv.1  |-  F/_ x D
fnlimfv.2  |-  F/_ x F
fnlimfv.3  |-  G  =  ( x  e.  D  |->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) ) )
fnlimfv.4  |-  ( ph  ->  X  e.  D )
Assertion
Ref Expression
fnlimfv  |-  ( ph  ->  ( G `  X
)  =  (  ~~>  `  (
m  e.  Z  |->  ( ( F `  m
) `  X )
) ) )
Distinct variable groups:    m, X    x, Z    x, m
Allowed substitution hints:    ph( x, m)    D( x, m)    F( x, m)    G( x, m)    X( x)    Z( m)

Proof of Theorem fnlimfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fnlimfv.3 . . . 4  |-  G  =  ( x  e.  D  |->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) ) )
2 fnlimfv.1 . . . . 5  |-  F/_ x D
3 nfcv 2764 . . . . 5  |-  F/_ y D
4 nfcv 2764 . . . . 5  |-  F/_ y
(  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) )
5 nfcv 2764 . . . . . 6  |-  F/_ x  ~~>
6 nfcv 2764 . . . . . . 7  |-  F/_ x Z
7 fnlimfv.2 . . . . . . . . 9  |-  F/_ x F
8 nfcv 2764 . . . . . . . . 9  |-  F/_ x m
97, 8nffv 6198 . . . . . . . 8  |-  F/_ x
( F `  m
)
10 nfcv 2764 . . . . . . . 8  |-  F/_ x
y
119, 10nffv 6198 . . . . . . 7  |-  F/_ x
( ( F `  m ) `  y
)
126, 11nfmpt 4746 . . . . . 6  |-  F/_ x
( m  e.  Z  |->  ( ( F `  m ) `  y
) )
135, 12nffv 6198 . . . . 5  |-  F/_ x
(  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) ) )
14 fveq2 6191 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  m
) `  x )  =  ( ( F `
 m ) `  y ) )
1514mpteq2dv 4745 . . . . . 6  |-  ( x  =  y  ->  (
m  e.  Z  |->  ( ( F `  m
) `  x )
)  =  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) ) )
1615fveq2d 6195 . . . . 5  |-  ( x  =  y  ->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  =  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) ) ) )
172, 3, 4, 13, 16cbvmptf 4748 . . . 4  |-  ( x  e.  D  |->  (  ~~>  `  (
m  e.  Z  |->  ( ( F `  m
) `  x )
) ) )  =  ( y  e.  D  |->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) ) ) )
181, 17eqtri 2644 . . 3  |-  G  =  ( y  e.  D  |->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) ) ) )
1918a1i 11 . 2  |-  ( ph  ->  G  =  ( y  e.  D  |->  (  ~~>  `  (
m  e.  Z  |->  ( ( F `  m
) `  y )
) ) ) )
20 fveq2 6191 . . . . 5  |-  ( y  =  X  ->  (
( F `  m
) `  y )  =  ( ( F `
 m ) `  X ) )
2120mpteq2dv 4745 . . . 4  |-  ( y  =  X  ->  (
m  e.  Z  |->  ( ( F `  m
) `  y )
)  =  ( m  e.  Z  |->  ( ( F `  m ) `
 X ) ) )
2221fveq2d 6195 . . 3  |-  ( y  =  X  ->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `  y
) ) )  =  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 X ) ) ) )
2322adantl 482 . 2  |-  ( (
ph  /\  y  =  X )  ->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `  y
) ) )  =  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 X ) ) ) )
24 fnlimfv.4 . 2  |-  ( ph  ->  X  e.  D )
25 fvexd 6203 . 2  |-  ( ph  ->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `
 X ) ) )  e.  _V )
2619, 23, 24, 25fvmptd 6288 1  |-  ( ph  ->  ( G `  X
)  =  (  ~~>  `  (
m  e.  Z  |->  ( ( F `  m
) `  X )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200    |-> cmpt 4729   ` cfv 5888    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  fnlimcnv  39899  smflimlem2  40980
  Copyright terms: Public domain W3C validator