| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fntpg | Structured version Visualization version Unicode version | ||
| Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| fntpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funtpg 5942 |
. 2
| |
| 2 | dmsnopg 5606 |
. . . . . . . . . 10
| |
| 3 | 2 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 4 | dmsnopg 5606 |
. . . . . . . . . 10
| |
| 5 | 4 | 3ad2ant2 1083 |
. . . . . . . . 9
|
| 6 | 3, 5 | jca 554 |
. . . . . . . 8
|
| 7 | 6 | 3ad2ant2 1083 |
. . . . . . 7
|
| 8 | uneq12 3762 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 17 |
. . . . . 6
|
| 10 | df-pr 4180 |
. . . . . 6
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . 5
|
| 12 | df-pr 4180 |
. . . . . . . 8
| |
| 13 | 12 | dmeqi 5325 |
. . . . . . 7
|
| 14 | 13 | eqeq1i 2627 |
. . . . . 6
|
| 15 | dmun 5331 |
. . . . . . 7
| |
| 16 | 15 | eqeq1i 2627 |
. . . . . 6
|
| 17 | 14, 16 | bitri 264 |
. . . . 5
|
| 18 | 11, 17 | sylibr 224 |
. . . 4
|
| 19 | dmsnopg 5606 |
. . . . . 6
| |
| 20 | 19 | 3ad2ant3 1084 |
. . . . 5
|
| 21 | 20 | 3ad2ant2 1083 |
. . . 4
|
| 22 | 18, 21 | uneq12d 3768 |
. . 3
|
| 23 | df-tp 4182 |
. . . . 5
| |
| 24 | 23 | dmeqi 5325 |
. . . 4
|
| 25 | dmun 5331 |
. . . 4
| |
| 26 | 24, 25 | eqtri 2644 |
. . 3
|
| 27 | df-tp 4182 |
. . 3
| |
| 28 | 22, 26, 27 | 3eqtr4g 2681 |
. 2
|
| 29 | df-fn 5891 |
. 2
| |
| 30 | 1, 28, 29 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-fun 5890 df-fn 5891 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |