Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem3 Structured version   Visualization version   Unicode version

Theorem fourierdlem3 40327
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem3.1  |-  P  =  ( m  e.  NN  |->  { p  e.  (
( -u pi [,] pi )  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  = 
-u pi  /\  (
p `  m )  =  pi )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
Assertion
Ref Expression
fourierdlem3  |-  ( M  e.  NN  ->  ( Q  e.  ( P `  M )  <->  ( Q  e.  ( ( -u pi [,] pi )  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  -u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
Distinct variable groups:    i, M, m, p    Q, i, p
Allowed substitution hints:    P( i, m, p)    Q( m)

Proof of Theorem fourierdlem3
StepHypRef Expression
1 oveq2 6658 . . . . . 6  |-  ( m  =  M  ->  (
0 ... m )  =  ( 0 ... M
) )
21oveq2d 6666 . . . . 5  |-  ( m  =  M  ->  (
( -u pi [,] pi )  ^m  ( 0 ... m ) )  =  ( ( -u pi [,] pi )  ^m  (
0 ... M ) ) )
3 fveq2 6191 . . . . . . . 8  |-  ( m  =  M  ->  (
p `  m )  =  ( p `  M ) )
43eqeq1d 2624 . . . . . . 7  |-  ( m  =  M  ->  (
( p `  m
)  =  pi  <->  ( p `  M )  =  pi ) )
54anbi2d 740 . . . . . 6  |-  ( m  =  M  ->  (
( ( p ` 
0 )  =  -u pi  /\  ( p `  m )  =  pi )  <->  ( ( p `
 0 )  = 
-u pi  /\  (
p `  M )  =  pi ) ) )
6 oveq2 6658 . . . . . . 7  |-  ( m  =  M  ->  (
0..^ m )  =  ( 0..^ M ) )
76raleqdv 3144 . . . . . 6  |-  ( m  =  M  ->  ( A. i  e.  (
0..^ m ) ( p `  i )  <  ( p `  ( i  +  1 ) )  <->  A. i  e.  ( 0..^ M ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) ) )
85, 7anbi12d 747 . . . . 5  |-  ( m  =  M  ->  (
( ( ( p `
 0 )  = 
-u pi  /\  (
p `  m )  =  pi )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) )  <->  ( (
( p `  0
)  =  -u pi  /\  ( p `  M
)  =  pi )  /\  A. i  e.  ( 0..^ M ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) ) ) )
92, 8rabeqbidv 3195 . . . 4  |-  ( m  =  M  ->  { p  e.  ( ( -u pi [,] pi )  ^m  (
0 ... m ) )  |  ( ( ( p `  0 )  =  -u pi  /\  (
p `  m )  =  pi )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) }  =  { p  e.  (
( -u pi [,] pi )  ^m  ( 0 ... M ) )  |  ( ( ( p `
 0 )  = 
-u pi  /\  (
p `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
10 fourierdlem3.1 . . . 4  |-  P  =  ( m  e.  NN  |->  { p  e.  (
( -u pi [,] pi )  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  = 
-u pi  /\  (
p `  m )  =  pi )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
11 ovex 6678 . . . . 5  |-  ( (
-u pi [,] pi )  ^m  ( 0 ... M ) )  e. 
_V
1211rabex 4813 . . . 4  |-  { p  e.  ( ( -u pi [,] pi )  ^m  (
0 ... M ) )  |  ( ( ( p `  0 )  =  -u pi  /\  (
p `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) }  e.  _V
139, 10, 12fvmpt 6282 . . 3  |-  ( M  e.  NN  ->  ( P `  M )  =  { p  e.  ( ( -u pi [,] pi )  ^m  (
0 ... M ) )  |  ( ( ( p `  0 )  =  -u pi  /\  (
p `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
1413eleq2d 2687 . 2  |-  ( M  e.  NN  ->  ( Q  e.  ( P `  M )  <->  Q  e.  { p  e.  ( (
-u pi [,] pi )  ^m  ( 0 ... M ) )  |  ( ( ( p `
 0 )  = 
-u pi  /\  (
p `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } ) )
15 fveq1 6190 . . . . . 6  |-  ( p  =  Q  ->  (
p `  0 )  =  ( Q ` 
0 ) )
1615eqeq1d 2624 . . . . 5  |-  ( p  =  Q  ->  (
( p `  0
)  =  -u pi  <->  ( Q `  0 )  =  -u pi ) )
17 fveq1 6190 . . . . . 6  |-  ( p  =  Q  ->  (
p `  M )  =  ( Q `  M ) )
1817eqeq1d 2624 . . . . 5  |-  ( p  =  Q  ->  (
( p `  M
)  =  pi  <->  ( Q `  M )  =  pi ) )
1916, 18anbi12d 747 . . . 4  |-  ( p  =  Q  ->  (
( ( p ` 
0 )  =  -u pi  /\  ( p `  M )  =  pi )  <->  ( ( Q `
 0 )  = 
-u pi  /\  ( Q `  M )  =  pi ) ) )
20 fveq1 6190 . . . . . 6  |-  ( p  =  Q  ->  (
p `  i )  =  ( Q `  i ) )
21 fveq1 6190 . . . . . 6  |-  ( p  =  Q  ->  (
p `  ( i  +  1 ) )  =  ( Q `  ( i  +  1 ) ) )
2220, 21breq12d 4666 . . . . 5  |-  ( p  =  Q  ->  (
( p `  i
)  <  ( p `  ( i  +  1 ) )  <->  ( Q `  i )  <  ( Q `  ( i  +  1 ) ) ) )
2322ralbidv 2986 . . . 4  |-  ( p  =  Q  ->  ( A. i  e.  (
0..^ M ) ( p `  i )  <  ( p `  ( i  +  1 ) )  <->  A. i  e.  ( 0..^ M ) ( Q `  i
)  <  ( Q `  ( i  +  1 ) ) ) )
2419, 23anbi12d 747 . . 3  |-  ( p  =  Q  ->  (
( ( ( p `
 0 )  = 
-u pi  /\  (
p `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) )  <->  ( (
( Q `  0
)  =  -u pi  /\  ( Q `  M
)  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `  i
)  <  ( Q `  ( i  +  1 ) ) ) ) )
2524elrab 3363 . 2  |-  ( Q  e.  { p  e.  ( ( -u pi [,] pi )  ^m  (
0 ... M ) )  |  ( ( ( p `  0 )  =  -u pi  /\  (
p `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) }  <->  ( Q  e.  ( ( -u pi [,] pi )  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  -u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) )
2614, 25syl6bb 276 1  |-  ( M  e.  NN  ->  ( Q  e.  ( P `  M )  <->  ( Q  e.  ( ( -u pi [,] pi )  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  -u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074   -ucneg 10267   NNcn 11020   [,]cicc 12178   ...cfz 12326  ..^cfzo 12465   picpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator