Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege123 Structured version   Visualization version   Unicode version

Theorem frege123 38280
Description: Lemma for frege124 38281. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege123.x  |-  X  e.  U
frege123.y  |-  Y  e.  V
Assertion
Ref Expression
frege123  |-  ( ( A. a ( Y R a  ->  X
( ( t+ `  R )  u.  _I  ) a )  ->  ( Y ( t+ `  R
) M  ->  X
( ( t+ `  R )  u.  _I  ) M ) )  ->  ( Fun  `' `' R  ->  ( Y R X  ->  ( Y ( t+ `  R ) M  ->  X ( ( t+ `  R
)  u.  _I  ) M ) ) ) )
Distinct variable groups:    R, a    X, a    Y, a
Allowed substitution hints:    U( a)    M( a)    V( a)

Proof of Theorem frege123
StepHypRef Expression
1 frege123.x . . . 4  |-  X  e.  U
2 frege123.y . . . 4  |-  Y  e.  V
3 vex 3203 . . . 4  |-  a  e. 
_V
41, 2, 3frege122 38279 . . 3  |-  ( Fun  `' `' R  ->  ( Y R X  ->  ( Y R a  ->  X
( ( t+ `  R )  u.  _I  ) a ) ) )
54alrimdv 1857 . 2  |-  ( Fun  `' `' R  ->  ( Y R X  ->  A. a
( Y R a  ->  X ( ( t+ `  R
)  u.  _I  )
a ) ) )
6 frege19 38118 . 2  |-  ( ( Fun  `' `' R  ->  ( Y R X  ->  A. a ( Y R a  ->  X
( ( t+ `  R )  u.  _I  ) a ) ) )  ->  (
( A. a ( Y R a  ->  X ( ( t+ `  R )  u.  _I  ) a )  ->  ( Y
( t+ `  R ) M  ->  X ( ( t+ `  R )  u.  _I  ) M ) )  ->  ( Fun  `' `' R  ->  ( Y R X  ->  ( Y ( t+ `  R ) M  ->  X ( ( t+ `  R
)  u.  _I  ) M ) ) ) ) )
75, 6ax-mp 5 1  |-  ( ( A. a ( Y R a  ->  X
( ( t+ `  R )  u.  _I  ) a )  ->  ( Y ( t+ `  R
) M  ->  X
( ( t+ `  R )  u.  _I  ) M ) )  ->  ( Fun  `' `' R  ->  ( Y R X  ->  ( Y ( t+ `  R ) M  ->  X ( ( t+ `  R
)  u.  _I  ) M ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    e. wcel 1990   _Vcvv 3200    u. cun 3572   class class class wbr 4653    _I cid 5023   `'ccnv 5113   Fun wfun 5882   ` cfv 5888   t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-frege1 38084  ax-frege2 38085  ax-frege8 38103  ax-frege52a 38151  ax-frege58b 38195
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  frege124  38281
  Copyright terms: Public domain W3C validator