MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem3 Structured version   Visualization version   Unicode version

Theorem frgrwopreglem3 27178
Description: Lemma 3 for frgrwopreg 27187. The vertices in the sets  A and  B have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 2-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v  |-  V  =  (Vtx `  G )
frgrwopreg.d  |-  D  =  (VtxDeg `  G )
frgrwopreg.a  |-  A  =  { x  e.  V  |  ( D `  x )  =  K }
frgrwopreg.b  |-  B  =  ( V  \  A
)
Assertion
Ref Expression
frgrwopreglem3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( D `  X
)  =/=  ( D `
 Y ) )
Distinct variable groups:    x, V    x, A    x, G    x, K    x, D    x, X    x, Y
Allowed substitution hint:    B( x)

Proof of Theorem frgrwopreglem3
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( x  =  Y  ->  ( D `  x )  =  ( D `  Y ) )
21eqeq1d 2624 . . . . 5  |-  ( x  =  Y  ->  (
( D `  x
)  =  K  <->  ( D `  Y )  =  K ) )
32notbid 308 . . . 4  |-  ( x  =  Y  ->  ( -.  ( D `  x
)  =  K  <->  -.  ( D `  Y )  =  K ) )
4 frgrwopreg.b . . . . 5  |-  B  =  ( V  \  A
)
5 frgrwopreg.a . . . . . 6  |-  A  =  { x  e.  V  |  ( D `  x )  =  K }
65difeq2i 3725 . . . . 5  |-  ( V 
\  A )  =  ( V  \  {
x  e.  V  | 
( D `  x
)  =  K }
)
7 notrab 3904 . . . . 5  |-  ( V 
\  { x  e.  V  |  ( D `
 x )  =  K } )  =  { x  e.  V  |  -.  ( D `  x )  =  K }
84, 6, 73eqtri 2648 . . . 4  |-  B  =  { x  e.  V  |  -.  ( D `  x )  =  K }
93, 8elrab2 3366 . . 3  |-  ( Y  e.  B  <->  ( Y  e.  V  /\  -.  ( D `  Y )  =  K ) )
10 fveq2 6191 . . . . . . 7  |-  ( x  =  X  ->  ( D `  x )  =  ( D `  X ) )
1110eqeq1d 2624 . . . . . 6  |-  ( x  =  X  ->  (
( D `  x
)  =  K  <->  ( D `  X )  =  K ) )
1211, 5elrab2 3366 . . . . 5  |-  ( X  e.  A  <->  ( X  e.  V  /\  ( D `  X )  =  K ) )
13 eqeq2 2633 . . . . . . 7  |-  ( ( D `  X )  =  K  ->  (
( D `  Y
)  =  ( D `
 X )  <->  ( D `  Y )  =  K ) )
1413notbid 308 . . . . . 6  |-  ( ( D `  X )  =  K  ->  ( -.  ( D `  Y
)  =  ( D `
 X )  <->  -.  ( D `  Y )  =  K ) )
15 neqne 2802 . . . . . . 7  |-  ( -.  ( D `  Y
)  =  ( D `
 X )  -> 
( D `  Y
)  =/=  ( D `
 X ) )
1615necomd 2849 . . . . . 6  |-  ( -.  ( D `  Y
)  =  ( D `
 X )  -> 
( D `  X
)  =/=  ( D `
 Y ) )
1714, 16syl6bir 244 . . . . 5  |-  ( ( D `  X )  =  K  ->  ( -.  ( D `  Y
)  =  K  -> 
( D `  X
)  =/=  ( D `
 Y ) ) )
1812, 17simplbiim 659 . . . 4  |-  ( X  e.  A  ->  ( -.  ( D `  Y
)  =  K  -> 
( D `  X
)  =/=  ( D `
 Y ) ) )
1918com12 32 . . 3  |-  ( -.  ( D `  Y
)  =  K  -> 
( X  e.  A  ->  ( D `  X
)  =/=  ( D `
 Y ) ) )
209, 19simplbiim 659 . 2  |-  ( Y  e.  B  ->  ( X  e.  A  ->  ( D `  X )  =/=  ( D `  Y ) ) )
2120impcom 446 1  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( D `  X
)  =/=  ( D `
 Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    \ cdif 3571   ` cfv 5888  Vtxcvtx 25874  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  frgrwopreglem4  27179  frgrwopreglem5lem  27184
  Copyright terms: Public domain W3C validator