MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg Structured version   Visualization version   Unicode version

Theorem frgrwopreg 27187
Description: In a friendship graph there are either no vertices ( A  =  (/)) or exactly one vertex ( ( # `  A
)  =  1) having degree  K, or all ( B  =  (/)) or all except one vertices ( ( # `  B )  =  1) have degree  K. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v  |-  V  =  (Vtx `  G )
frgrwopreg.d  |-  D  =  (VtxDeg `  G )
frgrwopreg.a  |-  A  =  { x  e.  V  |  ( D `  x )  =  K }
frgrwopreg.b  |-  B  =  ( V  \  A
)
Assertion
Ref Expression
frgrwopreg  |-  ( G  e. FriendGraph  ->  ( ( (
# `  A )  =  1  \/  A  =  (/) )  \/  (
( # `  B )  =  1  \/  B  =  (/) ) ) )
Distinct variable groups:    x, V    x, A    x, G    x, K    x, D    x, B

Proof of Theorem frgrwopreg
Dummy variables  a 
b  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . 3  |-  V  =  (Vtx `  G )
2 frgrwopreg.d . . 3  |-  D  =  (VtxDeg `  G )
3 frgrwopreg.a . . 3  |-  A  =  { x  e.  V  |  ( D `  x )  =  K }
4 frgrwopreg.b . . 3  |-  B  =  ( V  \  A
)
51, 2, 3, 4frgrwopreglem1 27176 . 2  |-  ( A  e.  _V  /\  B  e.  _V )
6 hashv01gt1 13133 . . . 4  |-  ( A  e.  _V  ->  (
( # `  A )  =  0  \/  ( # `
 A )  =  1  \/  1  < 
( # `  A ) ) )
7 hasheq0 13154 . . . . . 6  |-  ( A  e.  _V  ->  (
( # `  A )  =  0  <->  A  =  (/) ) )
8 biidd 252 . . . . . 6  |-  ( A  e.  _V  ->  (
( # `  A )  =  1  <->  ( # `  A
)  =  1 ) )
9 biidd 252 . . . . . 6  |-  ( A  e.  _V  ->  (
1  <  ( # `  A
)  <->  1  <  ( # `
 A ) ) )
107, 8, 93orbi123d 1398 . . . . 5  |-  ( A  e.  _V  ->  (
( ( # `  A
)  =  0  \/  ( # `  A
)  =  1  \/  1  <  ( # `  A ) )  <->  ( A  =  (/)  \/  ( # `  A )  =  1  \/  1  <  ( # `
 A ) ) ) )
11 hashv01gt1 13133 . . . . . . 7  |-  ( B  e.  _V  ->  (
( # `  B )  =  0  \/  ( # `
 B )  =  1  \/  1  < 
( # `  B ) ) )
12 hasheq0 13154 . . . . . . . . 9  |-  ( B  e.  _V  ->  (
( # `  B )  =  0  <->  B  =  (/) ) )
13 biidd 252 . . . . . . . . 9  |-  ( B  e.  _V  ->  (
( # `  B )  =  1  <->  ( # `  B
)  =  1 ) )
14 biidd 252 . . . . . . . . 9  |-  ( B  e.  _V  ->  (
1  <  ( # `  B
)  <->  1  <  ( # `
 B ) ) )
1512, 13, 143orbi123d 1398 . . . . . . . 8  |-  ( B  e.  _V  ->  (
( ( # `  B
)  =  0  \/  ( # `  B
)  =  1  \/  1  <  ( # `  B ) )  <->  ( B  =  (/)  \/  ( # `  B )  =  1  \/  1  <  ( # `
 B ) ) ) )
16 olc 399 . . . . . . . . . . 11  |-  ( B  =  (/)  ->  ( (
# `  B )  =  1  \/  B  =  (/) ) )
1716olcd 408 . . . . . . . . . 10  |-  ( B  =  (/)  ->  ( ( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) )
18172a1d 26 . . . . . . . . 9  |-  ( B  =  (/)  ->  ( ( A  =  (/)  \/  ( # `
 A )  =  1  \/  1  < 
( # `  A ) )  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
19 orc 400 . . . . . . . . . . 11  |-  ( (
# `  B )  =  1  ->  (
( # `  B )  =  1  \/  B  =  (/) ) )
2019olcd 408 . . . . . . . . . 10  |-  ( (
# `  B )  =  1  ->  (
( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) )
21202a1d 26 . . . . . . . . 9  |-  ( (
# `  B )  =  1  ->  (
( A  =  (/)  \/  ( # `  A
)  =  1  \/  1  <  ( # `  A ) )  -> 
( G  e. FriendGraph  ->  (
( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) ) ) )
22 olc 399 . . . . . . . . . . . . 13  |-  ( A  =  (/)  ->  ( (
# `  A )  =  1  \/  A  =  (/) ) )
2322orcd 407 . . . . . . . . . . . 12  |-  ( A  =  (/)  ->  ( ( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) )
24232a1d 26 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  ( 1  <  ( # `  B
)  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
25 orc 400 . . . . . . . . . . . . 13  |-  ( (
# `  A )  =  1  ->  (
( # `  A )  =  1  \/  A  =  (/) ) )
2625orcd 407 . . . . . . . . . . . 12  |-  ( (
# `  A )  =  1  ->  (
( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) )
27262a1d 26 . . . . . . . . . . 11  |-  ( (
# `  A )  =  1  ->  (
1  <  ( # `  B
)  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
28 eqid 2622 . . . . . . . . . . . . . . 15  |-  (Edg `  G )  =  (Edg
`  G )
291, 2, 3, 4, 28frgrwopreglem5 27185 . . . . . . . . . . . . . 14  |-  ( ( G  e. FriendGraph  /\  1  < 
( # `  A )  /\  1  <  ( # `
 B ) )  ->  E. a  e.  A  E. x  e.  A  E. b  e.  B  E. y  e.  B  ( ( a  =/=  x  /\  b  =/=  y )  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  x }  e.  (Edg `  G )
)  /\  ( {
x ,  y }  e.  (Edg `  G
)  /\  { y ,  a }  e.  (Edg `  G ) ) ) )
30 frgrusgr 27124 . . . . . . . . . . . . . . . 16  |-  ( G  e. FriendGraph  ->  G  e. USGraph  )
31 simplll 798 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( G  e. USGraph  /\  ( a  e.  A  /\  x  e.  A
) )  /\  (
b  e.  B  /\  y  e.  B )
)  /\  ( a  =/=  x  /\  b  =/=  y ) )  ->  G  e. USGraph  )
32 elrabi 3359 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( a  e.  { x  e.  V  |  ( D `
 x )  =  K }  ->  a  e.  V )
3332, 3eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( a  e.  A  ->  a  e.  V )
3433adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a  e.  A  /\  x  e.  A )  ->  a  e.  V )
3534ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( G  e. USGraph  /\  ( a  e.  A  /\  x  e.  A
) )  /\  (
b  e.  B  /\  y  e.  B )
)  /\  ( a  =/=  x  /\  b  =/=  y ) )  -> 
a  e.  V )
36 rabidim1 3117 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  { x  e.  V  |  ( D `
 x )  =  K }  ->  x  e.  V )
3736, 3eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  A  ->  x  e.  V )
3837adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a  e.  A  /\  x  e.  A )  ->  x  e.  V )
3938ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( G  e. USGraph  /\  ( a  e.  A  /\  x  e.  A
) )  /\  (
b  e.  B  /\  y  e.  B )
)  /\  ( a  =/=  x  /\  b  =/=  y ) )  ->  x  e.  V )
40 simprl 794 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( G  e. USGraph  /\  ( a  e.  A  /\  x  e.  A
) )  /\  (
b  e.  B  /\  y  e.  B )
)  /\  ( a  =/=  x  /\  b  =/=  y ) )  -> 
a  =/=  x )
41 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( b  e.  ( V  \  A )  ->  b  e.  V )
4241, 4eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( b  e.  B  ->  b  e.  V )
4342adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( b  e.  B  /\  y  e.  B )  ->  b  e.  V )
4443ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( G  e. USGraph  /\  ( a  e.  A  /\  x  e.  A
) )  /\  (
b  e.  B  /\  y  e.  B )
)  /\  ( a  =/=  x  /\  b  =/=  y ) )  -> 
b  e.  V )
45 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( V  \  A )  ->  y  e.  V )
4645, 4eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  B  ->  y  e.  V )
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( b  e.  B  /\  y  e.  B )  ->  y  e.  V )
4847ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( G  e. USGraph  /\  ( a  e.  A  /\  x  e.  A
) )  /\  (
b  e.  B  /\  y  e.  B )
)  /\  ( a  =/=  x  /\  b  =/=  y ) )  -> 
y  e.  V )
49 simprr 796 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( G  e. USGraph  /\  ( a  e.  A  /\  x  e.  A
) )  /\  (
b  e.  B  /\  y  e.  B )
)  /\  ( a  =/=  x  /\  b  =/=  y ) )  -> 
b  =/=  y )
501, 284cyclusnfrgr 27156 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  e. USGraph  /\  (
a  e.  V  /\  x  e.  V  /\  a  =/=  x )  /\  ( b  e.  V  /\  y  e.  V  /\  b  =/=  y
) )  ->  (
( ( { a ,  b }  e.  (Edg `  G )  /\  { b ,  x }  e.  (Edg `  G )
)  /\  ( {
x ,  y }  e.  (Edg `  G
)  /\  { y ,  a }  e.  (Edg `  G ) ) )  ->  G  e/ FriendGraph  ) )
5131, 35, 39, 40, 44, 48, 49, 50syl133anc 1349 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( G  e. USGraph  /\  ( a  e.  A  /\  x  e.  A
) )  /\  (
b  e.  B  /\  y  e.  B )
)  /\  ( a  =/=  x  /\  b  =/=  y ) )  -> 
( ( ( { a ,  b }  e.  (Edg `  G
)  /\  { b ,  x }  e.  (Edg
`  G ) )  /\  ( { x ,  y }  e.  (Edg `  G )  /\  { y ,  a }  e.  (Edg `  G
) ) )  ->  G  e/ FriendGraph  ) )
5251exp4b 632 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( G  e. USGraph  /\  (
a  e.  A  /\  x  e.  A )
)  /\  ( b  e.  B  /\  y  e.  B ) )  -> 
( ( a  =/=  x  /\  b  =/=  y )  ->  (
( { a ,  b }  e.  (Edg
`  G )  /\  { b ,  x }  e.  (Edg `  G )
)  ->  ( ( { x ,  y }  e.  (Edg `  G )  /\  {
y ,  a }  e.  (Edg `  G
) )  ->  G  e/ FriendGraph  ) ) ) )
53523impd 1281 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e. USGraph  /\  (
a  e.  A  /\  x  e.  A )
)  /\  ( b  e.  B  /\  y  e.  B ) )  -> 
( ( ( a  =/=  x  /\  b  =/=  y )  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  x }  e.  (Edg `  G )
)  /\  ( {
x ,  y }  e.  (Edg `  G
)  /\  { y ,  a }  e.  (Edg `  G ) ) )  ->  G  e/ FriendGraph  ) )
54 df-nel 2898 . . . . . . . . . . . . . . . . . . . . 21  |-  ( G  e/ FriendGraph 
<->  -.  G  e. FriendGraph  )
55 pm2.21 120 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  G  e. FriendGraph  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) )
5654, 55sylbi 207 . . . . . . . . . . . . . . . . . . . 20  |-  ( G  e/ FriendGraph  ->  ( G  e. FriendGraph  -> 
( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) )
5753, 56syl6 35 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( G  e. USGraph  /\  (
a  e.  A  /\  x  e.  A )
)  /\  ( b  e.  B  /\  y  e.  B ) )  -> 
( ( ( a  =/=  x  /\  b  =/=  y )  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  x }  e.  (Edg `  G )
)  /\  ( {
x ,  y }  e.  (Edg `  G
)  /\  { y ,  a }  e.  (Edg `  G ) ) )  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
5857rexlimdvva 3038 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e. USGraph  /\  (
a  e.  A  /\  x  e.  A )
)  ->  ( E. b  e.  B  E. y  e.  B  (
( a  =/=  x  /\  b  =/=  y
)  /\  ( {
a ,  b }  e.  (Edg `  G
)  /\  { b ,  x }  e.  (Edg
`  G ) )  /\  ( { x ,  y }  e.  (Edg `  G )  /\  { y ,  a }  e.  (Edg `  G
) ) )  -> 
( G  e. FriendGraph  ->  (
( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) ) ) )
5958rexlimdvva 3038 . . . . . . . . . . . . . . . . 17  |-  ( G  e. USGraph  ->  ( E. a  e.  A  E. x  e.  A  E. b  e.  B  E. y  e.  B  ( (
a  =/=  x  /\  b  =/=  y )  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  x }  e.  (Edg `  G )
)  /\  ( {
x ,  y }  e.  (Edg `  G
)  /\  { y ,  a }  e.  (Edg `  G ) ) )  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
6059com23 86 . . . . . . . . . . . . . . . 16  |-  ( G  e. USGraph  ->  ( G  e. FriendGraph  -> 
( E. a  e.  A  E. x  e.  A  E. b  e.  B  E. y  e.  B  ( ( a  =/=  x  /\  b  =/=  y )  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  x }  e.  (Edg `  G )
)  /\  ( {
x ,  y }  e.  (Edg `  G
)  /\  { y ,  a }  e.  (Edg `  G ) ) )  ->  ( (
( # `  A )  =  1  \/  A  =  (/) )  \/  (
( # `  B )  =  1  \/  B  =  (/) ) ) ) ) )
6130, 60mpcom 38 . . . . . . . . . . . . . . 15  |-  ( G  e. FriendGraph  ->  ( E. a  e.  A  E. x  e.  A  E. b  e.  B  E. y  e.  B  ( (
a  =/=  x  /\  b  =/=  y )  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  x }  e.  (Edg `  G )
)  /\  ( {
x ,  y }  e.  (Edg `  G
)  /\  { y ,  a }  e.  (Edg `  G ) ) )  ->  ( (
( # `  A )  =  1  \/  A  =  (/) )  \/  (
( # `  B )  =  1  \/  B  =  (/) ) ) ) )
62613ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( G  e. FriendGraph  /\  1  < 
( # `  A )  /\  1  <  ( # `
 B ) )  ->  ( E. a  e.  A  E. x  e.  A  E. b  e.  B  E. y  e.  B  ( (
a  =/=  x  /\  b  =/=  y )  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  x }  e.  (Edg `  G )
)  /\  ( {
x ,  y }  e.  (Edg `  G
)  /\  { y ,  a }  e.  (Edg `  G ) ) )  ->  ( (
( # `  A )  =  1  \/  A  =  (/) )  \/  (
( # `  B )  =  1  \/  B  =  (/) ) ) ) )
6329, 62mpd 15 . . . . . . . . . . . . 13  |-  ( ( G  e. FriendGraph  /\  1  < 
( # `  A )  /\  1  <  ( # `
 B ) )  ->  ( ( (
# `  A )  =  1  \/  A  =  (/) )  \/  (
( # `  B )  =  1  \/  B  =  (/) ) ) )
64633exp 1264 . . . . . . . . . . . 12  |-  ( G  e. FriendGraph  ->  ( 1  < 
( # `  A )  ->  ( 1  < 
( # `  B )  ->  ( ( (
# `  A )  =  1  \/  A  =  (/) )  \/  (
( # `  B )  =  1  \/  B  =  (/) ) ) ) ) )
6564com3l 89 . . . . . . . . . . 11  |-  ( 1  <  ( # `  A
)  ->  ( 1  <  ( # `  B
)  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
6624, 27, 653jaoi 1391 . . . . . . . . . 10  |-  ( ( A  =  (/)  \/  ( # `
 A )  =  1  \/  1  < 
( # `  A ) )  ->  ( 1  <  ( # `  B
)  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
6766com12 32 . . . . . . . . 9  |-  ( 1  <  ( # `  B
)  ->  ( ( A  =  (/)  \/  ( # `
 A )  =  1  \/  1  < 
( # `  A ) )  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
6818, 21, 673jaoi 1391 . . . . . . . 8  |-  ( ( B  =  (/)  \/  ( # `
 B )  =  1  \/  1  < 
( # `  B ) )  ->  ( ( A  =  (/)  \/  ( # `
 A )  =  1  \/  1  < 
( # `  A ) )  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
6915, 68syl6bi 243 . . . . . . 7  |-  ( B  e.  _V  ->  (
( ( # `  B
)  =  0  \/  ( # `  B
)  =  1  \/  1  <  ( # `  B ) )  -> 
( ( A  =  (/)  \/  ( # `  A
)  =  1  \/  1  <  ( # `  A ) )  -> 
( G  e. FriendGraph  ->  (
( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) ) ) ) )
7011, 69mpd 15 . . . . . 6  |-  ( B  e.  _V  ->  (
( A  =  (/)  \/  ( # `  A
)  =  1  \/  1  <  ( # `  A ) )  -> 
( G  e. FriendGraph  ->  (
( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) ) ) )
7170com12 32 . . . . 5  |-  ( ( A  =  (/)  \/  ( # `
 A )  =  1  \/  1  < 
( # `  A ) )  ->  ( B  e.  _V  ->  ( G  e. FriendGraph 
->  ( ( ( # `  A )  =  1  \/  A  =  (/) )  \/  ( ( # `
 B )  =  1  \/  B  =  (/) ) ) ) ) )
7210, 71syl6bi 243 . . . 4  |-  ( A  e.  _V  ->  (
( ( # `  A
)  =  0  \/  ( # `  A
)  =  1  \/  1  <  ( # `  A ) )  -> 
( B  e.  _V  ->  ( G  e. FriendGraph  ->  (
( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) ) ) ) )
736, 72mpd 15 . . 3  |-  ( A  e.  _V  ->  ( B  e.  _V  ->  ( G  e. FriendGraph  ->  ( (
( # `  A )  =  1  \/  A  =  (/) )  \/  (
( # `  B )  =  1  \/  B  =  (/) ) ) ) ) )
7473imp 445 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( G  e. FriendGraph  ->  (
( ( # `  A
)  =  1  \/  A  =  (/) )  \/  ( ( # `  B
)  =  1  \/  B  =  (/) ) ) ) )
755, 74ax-mp 5 1  |-  ( G  e. FriendGraph  ->  ( ( (
# `  A )  =  1  \/  A  =  (/) )  \/  (
( # `  B )  =  1  \/  B  =  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571   (/)c0 3915   {cpr 4179   class class class wbr 4653   ` cfv 5888   0cc0 9936   1c1 9937    < clt 10074   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044  VtxDegcvtxdg 26361   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-nbgr 26228  df-vtxdg 26362  df-frgr 27121
This theorem is referenced by:  frgrregorufr0  27188
  Copyright terms: Public domain W3C validator