| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrwopreglem5lem | Structured version Visualization version Unicode version | ||
| Description: Lemma for frgrwopreglem5 27185. (Contributed by AV, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| frgrwopreg.v |
|
| frgrwopreg.d |
|
| frgrwopreg.a |
|
| frgrwopreg.b |
|
| frgrwopreg.e |
|
| Ref | Expression |
|---|---|
| frgrwopreglem5lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrwopreg.a |
. . . . . 6
| |
| 2 | 1 | rabeq2i 3197 |
. . . . 5
|
| 3 | fveq2 6191 |
. . . . . . . 8
| |
| 4 | 3 | eqeq1d 2624 |
. . . . . . 7
|
| 5 | 4, 1 | elrab2 3366 |
. . . . . 6
|
| 6 | eqtr3 2643 |
. . . . . . . . 9
| |
| 7 | 6 | expcom 451 |
. . . . . . . 8
|
| 8 | 7 | adantl 482 |
. . . . . . 7
|
| 9 | 8 | com12 32 |
. . . . . 6
|
| 10 | 5, 9 | simplbiim 659 |
. . . . 5
|
| 11 | 2, 10 | syl5bi 232 |
. . . 4
|
| 12 | 11 | imp 445 |
. . 3
|
| 13 | 12 | adantr 481 |
. 2
|
| 14 | frgrwopreg.v |
. . . 4
| |
| 15 | frgrwopreg.d |
. . . 4
| |
| 16 | frgrwopreg.b |
. . . 4
| |
| 17 | 14, 15, 1, 16 | frgrwopreglem3 27178 |
. . 3
|
| 18 | 17 | ad2ant2r 783 |
. 2
|
| 19 | fveq2 6191 |
. . . . . . 7
| |
| 20 | 19 | eqeq1d 2624 |
. . . . . 6
|
| 21 | 20 | cbvrabv 3199 |
. . . . 5
|
| 22 | 1, 21 | eqtri 2644 |
. . . 4
|
| 23 | 14, 15, 22, 16 | frgrwopreglem3 27178 |
. . 3
|
| 24 | 23 | ad2ant2l 782 |
. 2
|
| 25 | 13, 18, 24 | 3jca 1242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: frgrwopreglem5 27185 |
| Copyright terms: Public domain | W3C validator |