MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frinxp Structured version   Visualization version   Unicode version

Theorem frinxp 5184
Description: Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
frinxp  |-  ( R  Fr  A  <->  ( R  i^i  ( A  X.  A
) )  Fr  A
)

Proof of Theorem frinxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . . . . . . . . 11  |-  ( z 
C_  A  ->  (
x  e.  z  ->  x  e.  A )
)
2 ssel 3597 . . . . . . . . . . 11  |-  ( z 
C_  A  ->  (
y  e.  z  -> 
y  e.  A ) )
31, 2anim12d 586 . . . . . . . . . 10  |-  ( z 
C_  A  ->  (
( x  e.  z  /\  y  e.  z )  ->  ( x  e.  A  /\  y  e.  A ) ) )
4 brinxp 5181 . . . . . . . . . . 11  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
54ancoms 469 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
63, 5syl6 35 . . . . . . . . 9  |-  ( z 
C_  A  ->  (
( x  e.  z  /\  y  e.  z )  ->  ( y R x  <->  y ( R  i^i  ( A  X.  A ) ) x ) ) )
76impl 650 . . . . . . . 8  |-  ( ( ( z  C_  A  /\  x  e.  z
)  /\  y  e.  z )  ->  (
y R x  <->  y ( R  i^i  ( A  X.  A ) ) x ) )
87notbid 308 . . . . . . 7  |-  ( ( ( z  C_  A  /\  x  e.  z
)  /\  y  e.  z )  ->  ( -.  y R x  <->  -.  y
( R  i^i  ( A  X.  A ) ) x ) )
98ralbidva 2985 . . . . . 6  |-  ( ( z  C_  A  /\  x  e.  z )  ->  ( A. y  e.  z  -.  y R x  <->  A. y  e.  z  -.  y ( R  i^i  ( A  X.  A ) ) x ) )
109rexbidva 3049 . . . . 5  |-  ( z 
C_  A  ->  ( E. x  e.  z  A. y  e.  z  -.  y R x  <->  E. x  e.  z  A. y  e.  z  -.  y
( R  i^i  ( A  X.  A ) ) x ) )
1110adantr 481 . . . 4  |-  ( ( z  C_  A  /\  z  =/=  (/) )  ->  ( E. x  e.  z  A. y  e.  z  -.  y R x  <->  E. x  e.  z  A. y  e.  z  -.  y
( R  i^i  ( A  X.  A ) ) x ) )
1211pm5.74i 260 . . 3  |-  ( ( ( z  C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y R x )  <-> 
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y ( R  i^i  ( A  X.  A
) ) x ) )
1312albii 1747 . 2  |-  ( A. z ( ( z 
C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y R x )  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y ( R  i^i  ( A  X.  A
) ) x ) )
14 df-fr 5073 . 2  |-  ( R  Fr  A  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y R x ) )
15 df-fr 5073 . 2  |-  ( ( R  i^i  ( A  X.  A ) )  Fr  A  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y ( R  i^i  ( A  X.  A
) ) x ) )
1613, 14, 153bitr4i 292 1  |-  ( R  Fr  A  <->  ( R  i^i  ( A  X.  A
) )  Fr  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Fr wfr 5070    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-fr 5073  df-xp 5120
This theorem is referenced by:  weinxp  5186
  Copyright terms: Public domain W3C validator