MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weinxp Structured version   Visualization version   Unicode version

Theorem weinxp 5186
Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997.) (Revised by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
weinxp  |-  ( R  We  A  <->  ( R  i^i  ( A  X.  A
) )  We  A
)

Proof of Theorem weinxp
StepHypRef Expression
1 frinxp 5184 . . 3  |-  ( R  Fr  A  <->  ( R  i^i  ( A  X.  A
) )  Fr  A
)
2 soinxp 5183 . . 3  |-  ( R  Or  A  <->  ( R  i^i  ( A  X.  A
) )  Or  A
)
31, 2anbi12i 733 . 2  |-  ( ( R  Fr  A  /\  R  Or  A )  <->  ( ( R  i^i  ( A  X.  A ) )  Fr  A  /\  ( R  i^i  ( A  X.  A ) )  Or  A ) )
4 df-we 5075 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
5 df-we 5075 . 2  |-  ( ( R  i^i  ( A  X.  A ) )  We  A  <->  ( ( R  i^i  ( A  X.  A ) )  Fr  A  /\  ( R  i^i  ( A  X.  A ) )  Or  A ) )
63, 4, 53bitr4i 292 1  |-  ( R  We  A  <->  ( R  i^i  ( A  X.  A
) )  We  A
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    i^i cin 3573    Or wor 5034    Fr wfr 5070    We wwe 5072    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120
This theorem is referenced by:  wemapwe  8594  infxpenlem  8836  dfac8b  8854  ac10ct  8857  canthwelem  9472  ltbwe  19472  vitali  23382  fin2so  33396  dnwech  37618  aomclem5  37628
  Copyright terms: Public domain W3C validator