MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frminex Structured version   Visualization version   Unicode version

Theorem frminex 5094
Description: If an element of a well-founded set satisfies a property  ph, then there is a minimal element that satisfies  ph. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
frminex.1  |-  A  e. 
_V
frminex.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
frminex  |-  ( R  Fr  A  ->  ( E. x  e.  A  ph 
->  E. x  e.  A  ( ph  /\  A. y  e.  A  ( ps  ->  -.  y R x ) ) ) )
Distinct variable groups:    x, A, y    x, R, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem frminex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rabn0 3958 . 2  |-  ( { x  e.  A  |  ph }  =/=  (/)  <->  E. x  e.  A  ph )
2 frminex.1 . . . . 5  |-  A  e. 
_V
32rabex 4813 . . . 4  |-  { x  e.  A  |  ph }  e.  _V
4 ssrab2 3687 . . . 4  |-  { x  e.  A  |  ph }  C_  A
5 fri 5076 . . . . . 6  |-  ( ( ( { x  e.  A  |  ph }  e.  _V  /\  R  Fr  A )  /\  ( { x  e.  A  |  ph }  C_  A  /\  { x  e.  A  |  ph }  =/=  (/) ) )  ->  E. z  e.  {
x  e.  A  |  ph } A. y  e. 
{ x  e.  A  |  ph }  -.  y R z )
6 frminex.2 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
76ralrab 3368 . . . . . . . 8  |-  ( A. y  e.  { x  e.  A  |  ph }  -.  y R z  <->  A. y  e.  A  ( ps  ->  -.  y R z ) )
87rexbii 3041 . . . . . . 7  |-  ( E. z  e.  { x  e.  A  |  ph } A. y  e.  { x  e.  A  |  ph }  -.  y R z  <->  E. z  e.  { x  e.  A  |  ph } A. y  e.  A  ( ps  ->  -.  y R z ) )
9 breq2 4657 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
y R z  <->  y R x ) )
109notbid 308 . . . . . . . . . 10  |-  ( z  =  x  ->  ( -.  y R z  <->  -.  y R x ) )
1110imbi2d 330 . . . . . . . . 9  |-  ( z  =  x  ->  (
( ps  ->  -.  y R z )  <->  ( ps  ->  -.  y R x ) ) )
1211ralbidv 2986 . . . . . . . 8  |-  ( z  =  x  ->  ( A. y  e.  A  ( ps  ->  -.  y R z )  <->  A. y  e.  A  ( ps  ->  -.  y R x ) ) )
1312rexrab2 3374 . . . . . . 7  |-  ( E. z  e.  { x  e.  A  |  ph } A. y  e.  A  ( ps  ->  -.  y R z )  <->  E. x  e.  A  ( ph  /\ 
A. y  e.  A  ( ps  ->  -.  y R x ) ) )
148, 13bitri 264 . . . . . 6  |-  ( E. z  e.  { x  e.  A  |  ph } A. y  e.  { x  e.  A  |  ph }  -.  y R z  <->  E. x  e.  A  ( ph  /\ 
A. y  e.  A  ( ps  ->  -.  y R x ) ) )
155, 14sylib 208 . . . . 5  |-  ( ( ( { x  e.  A  |  ph }  e.  _V  /\  R  Fr  A )  /\  ( { x  e.  A  |  ph }  C_  A  /\  { x  e.  A  |  ph }  =/=  (/) ) )  ->  E. x  e.  A  ( ph  /\  A. y  e.  A  ( ps  ->  -.  y R x ) ) )
1615an4s 869 . . . 4  |-  ( ( ( { x  e.  A  |  ph }  e.  _V  /\  { x  e.  A  |  ph }  C_  A )  /\  ( R  Fr  A  /\  { x  e.  A  |  ph }  =/=  (/) ) )  ->  E. x  e.  A  ( ph  /\  A. y  e.  A  ( ps  ->  -.  y R x ) ) )
173, 4, 16mpanl12 718 . . 3  |-  ( ( R  Fr  A  /\  { x  e.  A  |  ph }  =/=  (/) )  ->  E. x  e.  A  ( ph  /\  A. y  e.  A  ( ps  ->  -.  y R x ) ) )
1817ex 450 . 2  |-  ( R  Fr  A  ->  ( { x  e.  A  |  ph }  =/=  (/)  ->  E. x  e.  A  ( ph  /\ 
A. y  e.  A  ( ps  ->  -.  y R x ) ) ) )
191, 18syl5bir 233 1  |-  ( R  Fr  A  ->  ( E. x  e.  A  ph 
->  E. x  e.  A  ( ph  /\  A. y  e.  A  ( ps  ->  -.  y R x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Fr wfr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-fr 5073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator