MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundif Structured version   Visualization version   Unicode version

Theorem fundif 5935
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
fundif  |-  ( Fun 
F  ->  Fun  ( F 
\  A ) )

Proof of Theorem fundif
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldif 5238 . . 3  |-  ( Rel 
F  ->  Rel  ( F 
\  A ) )
2 brdif 4705 . . . . . . 7  |-  ( x ( F  \  A
) y  <->  ( x F y  /\  -.  x A y ) )
3 brdif 4705 . . . . . . 7  |-  ( x ( F  \  A
) z  <->  ( x F z  /\  -.  x A z ) )
4 pm2.27 42 . . . . . . . 8  |-  ( ( x F y  /\  x F z )  -> 
( ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  y  =  z ) )
54ad2ant2r 783 . . . . . . 7  |-  ( ( ( x F y  /\  -.  x A y )  /\  (
x F z  /\  -.  x A z ) )  ->  ( (
( x F y  /\  x F z )  ->  y  =  z )  ->  y  =  z ) )
62, 3, 5syl2anb 496 . . . . . 6  |-  ( ( x ( F  \  A ) y  /\  x ( F  \  A ) z )  ->  ( ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  y  =  z ) )
76com12 32 . . . . 5  |-  ( ( ( x F y  /\  x F z )  ->  y  =  z )  ->  (
( x ( F 
\  A ) y  /\  x ( F 
\  A ) z )  ->  y  =  z ) )
87alimi 1739 . . . 4  |-  ( A. z ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  A. z ( ( x ( F  \  A ) y  /\  x ( F  \  A ) z )  ->  y  =  z ) )
982alimi 1740 . . 3  |-  ( A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z )  ->  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) )
101, 9anim12i 590 . 2  |-  ( ( Rel  F  /\  A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z ) )  ->  ( Rel  ( F  \  A )  /\  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) ) )
11 dffun2 5898 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( x F y  /\  x F z )  -> 
y  =  z ) ) )
12 dffun2 5898 . 2  |-  ( Fun  ( F  \  A
)  <->  ( Rel  ( F  \  A )  /\  A. x A. y A. z ( ( x ( F  \  A
) y  /\  x
( F  \  A
) z )  -> 
y  =  z ) ) )
1310, 11, 123imtr4i 281 1  |-  ( Fun 
F  ->  Fun  ( F 
\  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481    \ cdif 3571   class class class wbr 4653   Rel wrel 5119   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  fundmge2nop  13275  fun2dmnop  13277  basvtxvalOLD  25903  edgfiedgvalOLD  25904
  Copyright terms: Public domain W3C validator