| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funopg | Structured version Visualization version Unicode version | ||
| Description: A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| funopg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4402 |
. . . . 5
| |
| 2 | 1 | funeqd 5910 |
. . . 4
|
| 3 | eqeq1 2626 |
. . . 4
| |
| 4 | 2, 3 | imbi12d 334 |
. . 3
|
| 5 | opeq2 4403 |
. . . . 5
| |
| 6 | 5 | funeqd 5910 |
. . . 4
|
| 7 | eqeq2 2633 |
. . . 4
| |
| 8 | 6, 7 | imbi12d 334 |
. . 3
|
| 9 | funrel 5905 |
. . . . 5
| |
| 10 | vex 3203 |
. . . . . 6
| |
| 11 | vex 3203 |
. . . . . 6
| |
| 12 | 10, 11 | relop 5272 |
. . . . 5
|
| 13 | 9, 12 | sylib 208 |
. . . 4
|
| 14 | 10, 11 | opth 4945 |
. . . . . . . 8
|
| 15 | vex 3203 |
. . . . . . . . . . . 12
| |
| 16 | 15 | opid 4421 |
. . . . . . . . . . 11
|
| 17 | 16 | preq1i 4271 |
. . . . . . . . . 10
|
| 18 | vex 3203 |
. . . . . . . . . . . 12
| |
| 19 | 15, 18 | dfop 4401 |
. . . . . . . . . . 11
|
| 20 | 19 | preq2i 4272 |
. . . . . . . . . 10
|
| 21 | snex 4908 |
. . . . . . . . . . 11
| |
| 22 | zfpair2 4907 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | dfop 4401 |
. . . . . . . . . 10
|
| 24 | 17, 20, 23 | 3eqtr4ri 2655 |
. . . . . . . . 9
|
| 25 | 24 | eqeq2i 2634 |
. . . . . . . 8
|
| 26 | 14, 25 | bitr3i 266 |
. . . . . . 7
|
| 27 | dffun4 5900 |
. . . . . . . . 9
| |
| 28 | 27 | simprbi 480 |
. . . . . . . 8
|
| 29 | opex 4932 |
. . . . . . . . . . 11
| |
| 30 | 29 | prid1 4297 |
. . . . . . . . . 10
|
| 31 | eleq2 2690 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | mpbiri 248 |
. . . . . . . . 9
|
| 33 | opex 4932 |
. . . . . . . . . . 11
| |
| 34 | 33 | prid2 4298 |
. . . . . . . . . 10
|
| 35 | eleq2 2690 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | mpbiri 248 |
. . . . . . . . 9
|
| 37 | 32, 36 | jca 554 |
. . . . . . . 8
|
| 38 | opeq12 4404 |
. . . . . . . . . . . . . 14
| |
| 39 | 38 | 3adant3 1081 |
. . . . . . . . . . . . 13
|
| 40 | 39 | eleq1d 2686 |
. . . . . . . . . . . 12
|
| 41 | opeq12 4404 |
. . . . . . . . . . . . . 14
| |
| 42 | 41 | 3adant2 1080 |
. . . . . . . . . . . . 13
|
| 43 | 42 | eleq1d 2686 |
. . . . . . . . . . . 12
|
| 44 | 40, 43 | anbi12d 747 |
. . . . . . . . . . 11
|
| 45 | eqeq12 2635 |
. . . . . . . . . . . 12
| |
| 46 | 45 | 3adant1 1079 |
. . . . . . . . . . 11
|
| 47 | 44, 46 | imbi12d 334 |
. . . . . . . . . 10
|
| 48 | 47 | spc3gv 3298 |
. . . . . . . . 9
|
| 49 | 15, 15, 18, 48 | mp3an 1424 |
. . . . . . . 8
|
| 50 | 28, 37, 49 | syl2im 40 |
. . . . . . 7
|
| 51 | 26, 50 | syl5bi 232 |
. . . . . 6
|
| 52 | dfsn2 4190 |
. . . . . . . . . . 11
| |
| 53 | preq2 4269 |
. . . . . . . . . . 11
| |
| 54 | 52, 53 | syl5req 2669 |
. . . . . . . . . 10
|
| 55 | 54 | eqeq2d 2632 |
. . . . . . . . 9
|
| 56 | eqtr3 2643 |
. . . . . . . . . 10
| |
| 57 | 56 | expcom 451 |
. . . . . . . . 9
|
| 58 | 55, 57 | syl6bi 243 |
. . . . . . . 8
|
| 59 | 58 | com13 88 |
. . . . . . 7
|
| 60 | 59 | imp 445 |
. . . . . 6
|
| 61 | 51, 60 | sylcom 30 |
. . . . 5
|
| 62 | 61 | exlimdvv 1862 |
. . . 4
|
| 63 | 13, 62 | mpd 15 |
. . 3
|
| 64 | 4, 8, 63 | vtocl2g 3270 |
. 2
|
| 65 | 64 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-fun 5890 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |