Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funsseq Structured version   Visualization version   Unicode version

Theorem funsseq 31666
Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
funsseq  |-  ( ( Fun  F  /\  Fun  G  /\  dom  F  =  dom  G )  -> 
( F  =  G  <-> 
F  C_  G )
)

Proof of Theorem funsseq
StepHypRef Expression
1 eqimss 3657 . 2  |-  ( F  =  G  ->  F  C_  G )
2 simpl3 1066 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G  /\  dom  F  =  dom  G )  /\  F  C_  G )  ->  dom  F  =  dom  G
)
32reseq2d 5396 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G  /\  dom  F  =  dom  G )  /\  F  C_  G )  -> 
( G  |`  dom  F
)  =  ( G  |`  dom  G ) )
4 funssres 5930 . . . . 5  |-  ( ( Fun  G  /\  F  C_  G )  ->  ( G  |`  dom  F )  =  F )
543ad2antl2 1224 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G  /\  dom  F  =  dom  G )  /\  F  C_  G )  -> 
( G  |`  dom  F
)  =  F )
6 simpl2 1065 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G  /\  dom  F  =  dom  G )  /\  F  C_  G )  ->  Fun  G )
7 funrel 5905 . . . . 5  |-  ( Fun 
G  ->  Rel  G )
8 resdm 5441 . . . . 5  |-  ( Rel 
G  ->  ( G  |` 
dom  G )  =  G )
96, 7, 83syl 18 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G  /\  dom  F  =  dom  G )  /\  F  C_  G )  -> 
( G  |`  dom  G
)  =  G )
103, 5, 93eqtr3d 2664 . . 3  |-  ( ( ( Fun  F  /\  Fun  G  /\  dom  F  =  dom  G )  /\  F  C_  G )  ->  F  =  G )
1110ex 450 . 2  |-  ( ( Fun  F  /\  Fun  G  /\  dom  F  =  dom  G )  -> 
( F  C_  G  ->  F  =  G ) )
121, 11impbid2 216 1  |-  ( ( Fun  F  /\  Fun  G  /\  dom  F  =  dom  G )  -> 
( F  =  G  <-> 
F  C_  G )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    C_ wss 3574   dom cdm 5114    |` cres 5116   Rel wrel 5119   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-fun 5890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator